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S U M M A R Y
How do body-wave traveltimes constrain the Earth’s radial (1-D) seismic structure? Existing
1-D seismological models underpin 3-D seismic tomography and earthquake location al-
gorithms. It is therefore crucial to assess the quality of such 1-D models, yet quantifying
uncertainties in seismological models is challenging and thus often ignored. Ideally, quality
assessment should be an integral part of the inverse method. Our aim in this study is twofold:
(i) we show how to solve a general Bayesian non-linear inverse problem and quantify model
uncertainties, and (ii) we investigate the constraint on spherically symmetric P-wave velocity
(VP) structure provided by body-wave traveltimes from the EHB bulletin (phases Pn, P, PP
and PKP). Our approach is based on artificial neural networks, which are very common in
pattern recognition problems and can be used to approximate an arbitrary function. We use
a Mixture Density Network to obtain 1-D marginal posterior probability density functions
(pdfs), which provide a quantitative description of our knowledge on the individual Earth
parameters. No linearization or model damping is required, which allows us to infer a model
which is constrained purely by the data.

We present 1-D marginal posterior pdfs for the 22 VP parameters and seven discontinuity
depths in our model. P-wave velocities in the inner core, outer core and lower mantle are
resolved well, with standard deviations of ∼0.2 to 1 per cent with respect to the mean of the
posterior pdfs. The maximum likelihoods of VP are in general similar to the corresponding
ak135 values, which lie within one or two standard deviations from the posterior means, thus
providing an independent validation of ak135 in this part of the radial model. Conversely, the
data contain little or no information on P-wave velocity in the D′′ layer, the upper mantle and the
homogeneous crustal layers. Further, the data do not constrain the depth of the discontinuities
in our model. Using additional phases available in the ISC bulletin, such as PcP, PKKP and
the converted phases SP and ScP, may enhance the resolvability of these parameters. Finally,
we show how the method can be extended to obtain a posterior pdf for a multidimensional
model space. This enables us to investigate correlations between model parameters.

Key words: Neural networks, fuzzy logic; Inverse theory; Probability distributions; Body
waves; Seismic tomography; Statistical seismology.

1 I N T RO D U C T I O N

Since the start of the 20th century, the illumination of the Earth’s
interior by seismic waves has enabled seismologists to infer its seis-
mic velocity and density structure. Current 3-D tomographic models
show structural variations in great detail (see e.g. Nolet 2008; Rawl-
inson et al. 2010, for an overview). Such tomographic inversions
are often built upon radial (1-D) earth models. The quality of a 3-D
tomographic model is thus intrinsically linked to the robustness of
a 1-D model; therefore, it is crucial to assess the quality of the
latter. Further, seismological models are frequently used to deter-
mine earthquake locations. The spherically symmetric ak135 model
(Kennett et al. 1995), for instance, is used in the location algorithm

of the International Seismological Centre (ISC). However, any im-
perfections in the earth model will map into the source location
estimate (e.g. Valentine & Trampert 2012b). Clearly, an accurate
estimation of seismic source parameters requires a precise knowl-
edge of the underlying earth model and its uncertainties. However,
determining the quality of earth models is non-trivial.

In many geophysical inverse problems, a single ‘optimal’ solution
is obtained via a linearized approach (e.g. Parker 1994; Tarantola
2005). In reality, the dependence of the data on the model often is
non-linear. Further, not all model parameters are equally resolved by
the data, and seismological inversions usually suffer from a strong
model non-uniqueness (e.g. de Wit et al. 2012). Therefore, it is
important to understand the uncertainties and resolution associated
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with the one ‘optimal’ model. Neglecting these is likely to lead to
flaws in any interpretation of the final model. Various approaches are
available to assess model quality. For instance, Kennett et al. (1995)
used a non-linear search procedure to assess the robustness of the
spherically symmetric ak135 model in the lower mantle and core,
but the velocity bounds for the search procedure itself were based
on the final model and relatively narrow, that is, within 0.5 per cent
from ak135. de Wit et al. (2012) showed how to explore the model
null-space to investigate the non-uniqueness of a 3-D tomographic
model. Alternatively, a resolution analysis is often employed to
investigate the robustness of the inferred Earth structure, using
for instance the linear framework provided by Backus & Gilbert
(1968, 1970). For example, the resolution of 1-D density struc-
ture, as determined from normal mode data, was investigated using
both linear (Masters & Gubbins 2003) and non-linear techniques
(Kennett 1998). However, it would be better to take the non-linearity
and model non-uniqueness into account in our inversion framework,
rather than treating them ex post facto.

A more general approach, which allows us to solve a non-linear
inverse problem and to quantify uncertainties, involves the descrip-
tion of our knowledge about earth parameters by probability dis-
tributions (e.g. Tarantola & Valette 1982; Tarantola 2005). Follow-
ing Bayes’ theorem (Bayes 1763), our posterior knowledge of the
model is our prior knowledge updated by the observed data, using
a physical theory that relates the model to the data. The aim of
Bayesian inference is to obtain the posterior probability distribution
σ (m|d) of the model m, conditioned on the observed data d. A com-
mon approach is to directly sample the posterior model probability
density using Monte Carlo techniques (e.g. Mosegaard & Taran-
tola 1995; Sambridge 1999a,b; Resovsky & Trampert 2003; Käufl
et al. 2013). Beghein et al. (2006) constructed probability density
functions (pdfs) to assess whether radial anisotropy in existing 1-D
mantle models is robust. While such sampling methods are powerful
for solving non-linear inverse problems, they quickly deteriorate as
the dimension of the model space increases, a phenomenon which
Bellman (1961) termed the curse of dimensionality. In practice, this
currently limits the use of sampling methods to inverse problems
which involve at most a few tens of model parameters.

As an alternative to Monte Carlo techniques, we use artificial
neural networks to solve the Bayesian inverse problem. Neural net-
works can be viewed as non-linear filters and are very common in
pattern recognition problems. They can approximate an arbitrary
non-linear relation between two parameter spaces, inferring the
mapping from a set of training data. As such, neural networks can
be very useful in situations where the forward relation is known,
but the inverse mapping is unknown or difficult to establish by
more conventional analytical or numerical methods. This situation
applies to many geophysical inverse problems. In addition, neural
networks can interpolate between available model samples, as op-
posed to conventional Monte Carlo methods, which only sample
the model space discretely. This helps to address the dimensional-
ity issue mentioned above. Common references on artificial neural
networks include Bishop (1995) and MacKay (2003).

Neural networks are widely applied in many different research
areas, such as finance, medicine and engineering. Applications in-
clude bankruptcy risk predictions (e.g. Odom & Sharda 2002),
breast cancer detection (e.g. Baker et al. 1995), face recognition
(e.g. Rowley 1998), landslide susceptibility estimation (e.g. Lee
et al. 1998) and traffic flow forecasting (e.g. Jiang & Adeli 2005).
Extensive reviews of geophysical applications of neural networks
are given by van der Baan & Jutten (2000) and Poulton (2002). Re-
cent examples include Devilee et al. (1999) and Meier et al. (2007a,

2009), who invert surface wave phase velocities for (local) Earth
structure, and Shahraeeni & Curtis (2011) and Shahraeeni et al.
(2012), who infer petrophysical parameters from seismic velocity
data on the reservoir scale. Valentine & Woodhouse (2010) use
neural networks for the quality assessment of seismic waveforms,
while Valentine & Trampert (2012a) investigate neural network-
based dimensionality reduction of seismograms and its potential
applications.

Here we perform a Bayesian inversion of P-wave traveltime
curves for the Earth’s spherically symmetric P-wave velocity (VP)
structure. We use traveltimes from the EHB bulletin (Engdahl et al.
1998) for the Pn, P, PP and PKP phases. The inverse problem is
non-linear, as the ray paths of the seismic phases depend on the un-
derlying velocity structure of the Earth. Our focus is twofold. First,
we demonstrate how to solve a Bayesian non-linear inverse problem
and assess model uncertainties using neural networks. Second, we
quantify the constraint on radial VP structure which is provided by
the traveltime data for these major seismic phases. To solve our
non-linear inverse problem, we use a particular class of neural net-
works, known as a Mixture Density Network (MDN, Bishop 1995).
An MDN outputs a parametric distribution, which approximates
the continuous posterior model probability density. This distribu-
tion reflects our updated state of knowledge on the earth model
parameters.

First, we briefly outline the Bayesian inversion framework, fol-
lowed by an introduction to artificial neural networks. Second, we
describe the model parametrization and the traveltime data used for
this study. Last, we invert the traveltime data using neural networks
and show the 1-D marginal pdfs for P-wave velocity parameters
and discontinuity depths. We emphasize that our focus lies on the
constraints on individual model parameters; we do not present a
new 1-D earth model.

2 M E T H O D O L O G Y

2.1 The inverse problem

In the Bayesian formalism, all information is described by prob-
ability distributions that represent degrees of belief for each pa-
rameter. Following Tarantola & Valette (1982), the posterior state
of knowledge is given by the conjunction of our prior knowledge
and the information contained in the data, expressed by the like-
lihood. The solution to the general inverse problem can then be
given by the conditional posterior probability distribution (Tarantola
2005)

σ (m|d) = kρ(m)L(m|d), (1)

where k is a normalizing constant, ρ(m) is the prior distribution for
the l-dimensional model m and L(m|d) is the likelihood function,
which reflects how well a model explains the data. Both the posterior
pdf and the likelihood function are conditioned on the observed
data d.

Instead of the pdf of the full model m, it is often desirable to
study the marginal probability distribution for a subset of the model
parameters, that is,

σ (m′|d) = kρ(m′)L(m′|d)

=
∫

σ (m|d)dmc+1dmc+2...dml , (2)

where m′ is a c-dimensional model vector (with c ≤ l). The marginal
posterior pdf represents the final state of knowledge of m′, given
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the variations in the remaining l–c model parameters. Usually, c =
1 or 2, in which case the marginal probability distribution in eq.
(2) represents 1-D or 2-D marginal posterior pdfs, respectively. The
former reflect our knowledge of a single model parameter, while
the latter are useful to investigate the correlation between any two
parameters.

2.2 Neural networks

An artificial neural network is essentially a mathematical model
of an arbitrary mapping between two parameter spaces. By chang-
ing the free parameters of the mathematical model, during a so-
called training process, the mapping can be modified to repre-
sent the desired relation. Network training is driven by presenting
the network with examples of corresponding input–output pairs.
The fundamental idea is to represent the potentially complicated
mapping as a combination of many simpler univariate activation
functions. Common choices for the activation functions are the lo-
gistic and hyperbolic tangent functions. We use the latter in this
work, because symmetric sigmoids, such as the hyperbolic tan-
gent, often display better convergence properties during network
training (e.g. LeCun et al. 1998). It is the non-linear nature of
such functions that helps neural networks to approximate non-linear
relations.

2.2.1 The Multilayer Perceptron (MLP)

Fig. 1 shows a two-layer feed-forward MLP. This particular type of
neural network consists of two layers of free parameters (weights),
which are represented by lines in the figure. The weight w

(1)
i j in

the first layer connects the input unit xi with the hidden neuron hj,

while the second layer weight w
(2)
jk connects the hidden unit hj to

the output neuron zk. In addition, the biases of the first (b(1)
j ) and

second layer (b(2)
k ) provide a constant offset as input to the neurons

in a subsequent layer. For the activation functions we use here, the

Figure 1. A two-layer feed-forward Multilayer Perceptron (MLP). The lines
represent the two layers of free parameters in the network, represented by

the weights w
(1)
i j and w

(2)
jk and biases b(1)

j and b(2)
k . The I input neurons xi

feed into the J hidden neurons hj, which form the input to the K output units
zk. An additional input of value 1 feeds into the hidden and output layer,
which is associated with the biases. Information flows only from the input
to the output neurons (feed-forward).

bias controls the threshold at which the output of a neuron changes
sign. Information flows only in the forward direction from the input
to the output neurons (feed-forward). The network output z(x; w) is
an explicit function of both the input x and network parameters w.
The K units in the MLP output layer are given by

zk = g

⎡
⎣ J∑

j

w
(2)
jk h j + b(2)

k

⎤
⎦ , (3)

where g( · ) represents the activation function for the output neurons,
w

(2)
jk and b(2)

k are the second layer weights and biases, respectively,
and hj are the outputs of the J hidden neurons

h j = f

[
I∑
i

w
(1)
i j xi + b(1)

j

]
. (4)

Here, f (·) is the activation function for the hidden units, w
(1)
i j and

b(1)
j are the first layer weights and biases, respectively, and xi rep-

resents the values of the I input units. For the hidden neurons, we
choose hyperbolic tangent functions, f (a) = tanh (a), while for the
output units we use a linear activation function, g(a) = a. These are
common choices, and such an MLP can learn an arbitrary continu-
ous mapping from a finite data set, provided the number of hidden
units is sufficient (Cybenko 1989; Hornik et al. 1989). Commonly,
a trial-and-error procedure is adopted to determine the appropriate
number of hidden neurons.

Learning corresponds to the minimization of a cost function with
respect to the network weights. The cost function measures the dif-
ference between the network output and the desired output, the target
vector. The necessary derivatives are given by the backpropagation
algorithm, as introduced by Werbos (1974) and Rumelhart et al.
(1986). The network is trained on a synthetic data set D = {xn, tn},
where n = 1, . . . , N labels the statistically independent patterns in
the data set. Every pattern consists of a pair of input and target vec-
tors x and t, respectively. Once successfully trained, the network can
be applied to unseen input to produce an estimate of the unknown
output.

2.2.2 The Mixture Density Network

Bishop (1995) shows that an MLP, as shown in Fig. 1, outputs the
mean of the conditional probability distribution p(t|x) of the target t,
conditioned on the input x. This will give meaningless results if the
underlying function, which relates input and target, is multivalued;
therefore, it is desirable to obtain the full conditional distribution of
the target (e.g. Bishop 1995; Meier et al. 2007a). We thus employ an
MDN, which can model an arbitrary probability distribution, in the
same fashion that an MLP can approximate an arbitrary function
(McLachlan & Basford 1988).

In our study, the network input x corresponds to the body-wave
traveltime curves d and the target t is given by the model parameters
of interest m′, a subspace of the radial P-wave velocity earth model
m. The precise composition of m, m′ and d will be discussed below.
An MDN gives a continuous approximation to the corresponding
marginal posterior pdf σ (m′|d) (eq. 2) as a linear sum of Gaussian
kernels

σ (m′|d; w) ≈
M∑

j=1

α j (d; w)φ j (m
′|d; w), (5)
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Figure 2. A Mixture Density Network (MDN), as introduced by Bishop (1995). The output of an MDN approximates a parametric distribution p(t|x) for the
target t, conditioned on the input x. The parameters describing this distribution are given by the output z of a neural network, such as the MLP shown in Fig. 1.
In this study, the input consists of traveltime data d, while the target represents the parameters of interest m′, which form a subspace of the l-dimensional radial
P-wave velocity earth model m (eqs 1 and 2).

where αj gives the relative importance of the j th kernel and the M
Gaussian kernels φj are defined as

φ j (m
′|d; w)= 1

(2π )c/2[σ j (d; w)]c
exp

{
−‖m′−μ j (d; w)‖2

2[σ j (d; w)]2

}
, (6)

where c is the dimensionality of the target vector m′. The Gaussian
mixture model is fully described by the mean vectors μ j (d; w) of
size c, the variances σ 2

j (d; w) and the mixing coefficients α j (d; w).
Each spherical Gaussian kernel φj is described by a single variance
σ 2

j (d; w), regardless of the dimensionality c of the target vector
m′. Note the explicit dependence of the network output σ (m′|d, w)
on the network weights w. We emphasize that an MDN models
the posterior pdf in eq. (2) directly. Thus, the likelihood function
L(m′|d) is not explicitly evaluated in the neural network, nor is
the prior distribution ρ(m′). The posterior distribution σ (m′|d) is
evaluated implicitly through network training.

Fig. 2 illustrates an MDN, as introduced by Bishop (1995). The
parameters describing the mixture model form the output z(d; w) of
a conventional MLP, as shown in Fig. 1. For M spherical Gaussian
kernels, the MLP will have (c + 2) · M output parameters. Alter-
natively, more complex Gaussian kernels, such as Gaussians with
full covariance matrices (Williams 1996), could be used. This is
computationally more demanding, however, and we find that spher-
ical kernels are flexible enough to model the probability densities
of interest here. See Bishop (1995) for a detailed description of the
MDN.

Once the parametric form of the probability distribution has been
defined (eqs 5 and 6), the associated parameters can be found by
training an MLP. Training corresponds to finding the weight values
that maximize the likelihood for the desired pdf σ (m′|d; w). Since
maximizing the likelihood is equivalent to minimizing the negative
logarithm of the likelihood, the error function for the MDN is defined
as (Bishop 1995)

E = −
N∑

n=1

ln

⎧⎨
⎩

M∑
j=1

α j (dn ; w)φ j (m
′
n|dn ; w)

⎫⎬
⎭ , (7)

where the outer summation runs over the N patterns in the synthetic
data set D = {dn, m′

n}. Analytical expressions for the derivatives

of E with respect to the adjustable network parameters are given
by Bishop (1995) and allow an optimization algorithm to be imple-
mented.

2.2.3 Network training

MDN training corresponds to the minimization of the cost function
in (eq. 7). Commonly, gradient-based optimization algorithms are
used for this task. We use the Scaled Conjugate Gradient (SCG)
algorithm (Møller 1993), which avoids the expensive line-search
procedure of the conjugate gradient algorithm. Conjugate gradient
methods acquire second order information about the error surface
and are therefore more efficient than simpler gradient descent meth-
ods.

Gradient-based optimization methods typically operate itera-
tively and thus require a user-defined starting point for the network
weights. The starting point is crucial to ensure that the network train-
ing converges to an appropriate solution. For the hyperbolic tangent
function, the summed input should be of order unity. If not, the
activation functions become saturated, that is, their first derivative
tends to zero. Consequently, the error surface will become almost
flat, so that training ceases to be useful. To aid the initialization of
the training process, it is common practice to pre-process the input
and target vectors (Appendix A).

The initial network weights are drawn from a Gaussian distri-
bution of zero mean. The variance of this distribution is inversely
proportional to the number of input units I for the first layer weights
w

(1)
i j and the number of hidden units J for the second layer weights

w
(2)
jk (Bishop 1995). Further, the network parameters are initialized

such that σ (m′|d, w) ≈ ρ(m′), that is, the initial posterior pdf re-
sembles the prior pdf. This requires setting some initial values for
the biases of the output layer in the MLP (b(2)

k in Fig. 1). Following
(Bishop 1995; Nabney 2002), such an initialization leads to faster
convergence and reduces the risk of the optimization method getting
stuck in a poor local minimum.

Regardless of the initialization, every network run will be sensi-
tive to the specific initial network parameters. It is therefore common
practice to train multiple networks with different random weight ini-
tializations, all other settings being equal. The optimal weight vector
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w∗, which minimizes the cost function (eq. 7), is used to estimate
the marginal posterior pdf σ (m′|d, w∗) through eq. (5).

2.2.4 Generalization and regularization

The goal of network training is to approximate the relationship be-
tween two parameter spaces. Such a mapping is in general believed
to be found when the optimal network produces accurate results for
previously unseen data, that is, data that was not used for network
training. In that case, the network is said to display a good gener-
alization behaviour. This can be verified by using a data set that is
independent of the training data.

To simulate the presence of measurement uncertainties in the
real data, noise is added to the synthetic data. This discourages the
network from fitting the details of the training data set, referred to
as overfitting. Instead, it enhances the generalization behaviour by
encouraging the network to map the underlying relation between
input and output. Bishop (1995) shows that such noise addition is
similar to using a regularization constraint (such as simple weight
decay), thereby forcing the network to find a smooth mapping, that
is, a mapping that is insensitive to variations in the data on the order
of the noise level. Meier et al. (2007a) demonstrate this concept in
the context of a Bayesian inversion of surface wave data.

In addition, we employ early stopping, which is a common pro-
cedure to improve generalization. The network is trained using the
conventional training set, but training is halted when the error (eq.
7) for an independent validation set starts to increase. Since the val-
idation set is used to determine the optimal set of network weights,
a third (test) set is used to verify the accuracy of the network on
unseen data.

3 M O D E L PA R A M E T R I Z AT I O N

We adopt a piecewise continuous representation for the P-wave
velocity model, as was used for the prem (Dziewonski & Anderson
1981) and iasp91 (Kennett & Engdahl 1991) models. The piecewise
continuous functions can be used to evaluate the model at any
depth exactly. We parametrize the depths of seven discontinuities
in the VP profile: the inner core boundary (ICB) and core–mantle
boundary (CMB), the top of the D′′ layer, the discontinuities around
660, 410 and 210 km depth and the Moho. We define the lower
mantle (LM) as the region between the top of the D′′ layer and
the 660 km discontinuity, while the transition zone (TZ) spans the
region between the 660 and 410 km discontinuities.

Between the discontinuities, we parametrize the P-wave velocity
structure at L depths (knots). Subsequently, we construct the VP

profile f (z), that is, the 1-D velocity structure between the disconti-
nuities, by interpolating between the L knots using a set of L natural
cubic spline functions

f (z) =
L∑

i=1

aiψi (z). (8)

Each spline function ψ i(z) is a function of the depth z and equals
1 at one knot, while being 0 at the remaining L − 1 knots (Fig. 3).
The coefficients ai represent the VP values at each knot. This yields
a piecewise continuous representation of the model.

The transition zone and the region between the 410 and 210 km
discontinuities are parametrized using eq. (8) with L = 2. This
results in linear velocity gradients with depth in these layers. We
separate the region between the Moho and 210 km discontinuity
in two linear (L = 2) segments, that is, 210–120 km and 120–
Moho km, as the linear velocity gradient in these two segments

Figure 3. An example of the natural cubic splines used to construct the 1-D
earth models, following eq. (8). The coefficients ai represent VP values in
the outer core (yellow diamonds), drawn from the prior model distribution
ρ(m). The black line shows the resulting VP profile f (z) in the outer core,
which is constructed by summing the products aiψ i(z) for the four splines
(dashed).

differs significantly in existing 1-D models such as ak135. Thus,
the velocity profile is continuous at 120 km depth, but its first
derivative is not. The depth of the transition at 120 km is not varied.
The lower mantle and outer core are parametrized by 4 knots, and
the inner core by 3, which results in non-linear gradients with depth
(Fig. 3). The crust is parametrized by two homogeneous layers. No
sediment or water layers are present. We thus have 29 parameters
in our model m: 22 VP parameters (the coefficients ai in eq. 8) and
7 discontinuity depths.

Tables 1 and 2 define the prior model distribution ρ(m) (eq. 1).
Discontinuity depths are independently drawn from uniform priors,
as are the VP values directly below the discontinuities (Table 1).
The prior distributions are centred on the corresponding values
of the ak135 model. We choose conservative priors by allowing
for a large variation in the independent model parameters, that
is, ±3 per cent with respect to ak135 for VP in the core and lower
mantle and ±5 per cent in the upper mantle. We emphasize that by
choosing such broad prior distributions, we ensure that the results
of our probabilistic inversion are not driven by the actual values in
the ak135 model.

The VP values at the other L − 1 knots in each region are calcu-
lated using the new value at the first knot (m1

d in Table 1) and the
gradient of the ak135 model. Subsequently, these values are per-
turbed, with the amount of perturbation drawn from a uniform prior
(Table 2). This introduces a correlation between the VP parameters
in each region. In general, radial P-wave velocity increases with
depth, that is, the velocity gradient is mostly positive. By using the
gradient in ak135, we aim to exclude physically implausible models
and restrict the size of our model space.

We generate 99 862 synthetic models, which are drawn from the
prior model distribution ρ(m). Ten synthetic models in the training
set are shown in Fig. 4, along with the ak135 model. Note that
locally negative velocity gradients can still exist in the models.

4 T R AV E LT I M E DATA

4.1 EHB data

The EHB bulletin (Engdahl et al. 1998) contains millions of
routinely determined traveltime measurements, which have been
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Table 1. Prior information on independent model parameters. Prior dis-
tributions are uniform over the specified ranges. The ranges for the P-
wave velocity parameters are given as percentile perturbations from ak135
(Kennett et al. 1995), except for VP in the two crustal layers. VP parame-
ters are indicated by m1

d and represent the knots located directly below a
discontinuity d. Note that the tops of the transition zone (TZ) and the lower
mantle (LM) are formed by the 410 and 660 km discontinuities, d410 and
d660, respectively. The interpolation style for the VP profile in every region,
following eq. (8), is given in the last column.

Discontinuity Parameter Range (km)

Inner–outer core (ICB) dICB 5133.5–5173.5
Core–mantle (CMB) dCMB 2871.5–2911.5
D′′ layer (top) dD′′ 2720–2760
660 discontinuity d660 630–690
410 discontinuity d410 380–440
210 discontinuity d210 190–230
Moho dMoho 25–75

Region Parameter Range (± per cent) Interpolation style

Inner core (IC) m1
IC 3 3 cubic splines

Outer core (OC) m1
OC 3 4 cubic splines

D′′ layer m1
D′′ 3 Linear

Lower mantle (LM) m1
LM 3 4 cubic splines

Transition zone (TZ) m1
TZ 5 Linear

410–210 m1
210 5 Linear

210–Moho m1
Moho 5

210–120 Linear
120–Moho Linear

Region Parameter Range (km s−1)

Lower crust (LC) mLC 6.4–7.4
Upper crust (UC) mUC 5.6–6.3

Table 2. Prior information on dependent model param-
eters. Prior distributions are uniform over the specified
ranges, which are given as percentile perturbations from
the updated model value (see text). The indices mi

d rep-
resent the correlated model parameters in every region d,
with higher indices i corresponding to deeper VP knots in
the parametrization. The corresponding independent pa-
rameters m1

d are listed in Table 1.

Region Parameter Range (± per cent)

Inner core (IC) m2,3
IC 1

Outer core (OC) m2,3,4
OC 1

D′′ m2
D′′ 1

Lower mantle (LM) m2,3,4
LM 1

Transition zone (TZ) m2
TZ 2

410–210 m2
210 2

210–Moho m2,3
Moho 2

corrected for source mislocation. We select traveltime data for the
Pn, P, PP, PKPab, PKPbc and PKPdf phases for the years 2001–
2008 (Fig. 5). For simplicity, we exclude PnPn, the upgoing phases
pP, pwP and sP and the crustal phases Pb and Pg.

Several corrections are provided with the EHB bulletin. We cor-
rect the raw EHB data for the Earth’s ellipticity and station elevation.
We do not apply the regionally smoothed station corrections, which
perform regional averaging (5 × 5◦ patches) to smooth out effects of
lateral heterogeneities in the upper mantle. In our setup, the imprint

Figure 4. Ten model realizations (red), drawn from the prior distribution
ρ(m) and ak135 (black) for VP.

Figure 5. Travel time measurements in the EHB bulletin for 2001–2008.
Event depths are restricted to lie between 14 and 16 km.

of 3-D structure on the traveltime measurements is treated as noise;
therefore, such a correction is unnecessary here.

We select the traveltimes for which the EHB estimated source
depth lies between 14 and 16 km. Note that this range of depths is
chosen to approximate a fixed source around 15 km depth and not
to represent the uncertainty in EHB source depth estimates; we will
discuss our data noise model below in Section 4.3. Each event in
the EHB bulletin is given a three-letter label that characterizes the
quality of hypocentral determination. We exclude the EHB mea-
surements for which the source depth is fixed to a standard depth by
Engdahl, denoted by FEQ in the EHB data, and solutions for which
the uncertainty in source depth is expected to be >15 km (LEQ,
XEQ). The remaining data correspond to 1100 events that were
registered at 5268 different stations (Fig. 6). Both sources and re-
ceivers are globally distributed, that is, within the typical limitations
of seismological data coverage.

4.2 Synthetic data

Neural network training and validation requires a data set containing
many examples of input–output pairs. For this purpose, we calculate
synthetic first-arrival traveltime curves for 99 862 synthetic models
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Neural networks for traveltime inversion 7

Figure 6. Locations of 1100 sources (red asterisks) and 5268 stations (green
dots) in the EHB data for 2001–2008. Event depths are restricted to lie
between 14 and 16 km.

using the TauP package (Crotwell et al. 1999). The synthetic models
are parametrized as described in the previous section. All 29 model
parameters are allowed to vary in each model realization. The source
depth is fixed to 15 km for all synthetic data. Thus, source depth
is a fixed parameter in our setup and any uncertainties in EHB
depth estimates are regarded as a source of data noise, as will
be discussed below in Section 4.3. The three PKP branches are
calculated separately. Travel times are computed for a phase-specific
range of epicentral distances at one degree intervals (Table 3). For
these phases, the distance ranges are comparable to those used by
Kennett et al. (1995), who used traveltime data collected by the ISC.
We include Pn, which refracts along the Moho, to provide a better
constraint on the structure of the uppermost mantle.

If for a given distance no arrival is computed by TauP, the trav-
eltime is set to zero. By doing so, the number of elements in every
traveltime branch is constant. This is a requirement of the net-
work architecture, which only permits input vectors of constant di-
mension. The zeros represent gaps in the traveltime curves, which
commonly result from low-velocity zones, and associated negative
gradients, in the earth model. This information is therefore available
to the neural network. Note that for the epicentral distance ranges
used (Table 3), no gaps occur in the globally distributed EHB data
(Fig. 5). This could indicate that there are no global low-velocity
zones in the parts of the Earth sampled by the data, or that some of
the EHB traveltimes do not represent a direct geometric arrival (or
a combination of both).

4.3 Data uncertainties

Uncertainties exist in both the epicentral distance, through the
source location estimate, and the traveltime measurements. We add
noise to the synthetic data to simulate these two types of uncertainty.

For every synthetic traveltime measurement, we draw a per-
turbation to the epicentral distance from a uniform distribution
U(−εdist, +εdist) with εdist = 0.1◦(∼10 km). The value of εdist is
similar to the average test-event mislocation reported by Engdahl

Figure 7. The half-width of the spread in the observed traveltimes εip is
used as the standard deviation of the Gaussian noise model, which differs for
every phase p and epicentral distance i. Different colours denote different
phases.

Table 4. Phase-specific measurement error εISC, as docu-
mented in ISC (2008), which serves as a minimum for the
standard deviation εip (Fig. 7).

Phase Pn P PP PKPab PKPbc PKPdf
εISC[s] 0.8 0.8 1.3 1.3 1.3 1.3

et al. (1998). The corresponding traveltime is updated by applying
the local gradient in the traveltime curve to this perturbation.

Second, the synthetic data have to be corrupted to reflect noise
in the traveltime data. The scatter in the observed traveltime data
(Fig. 5) originates from lateral heterogeneities in the Earth, mea-
surement errors, phase misidentifications and uncertainties in the
estimated source depth. For a given phase p and epicentral distance
i, we estimate the noise as the spread in the EHB traveltimes. The
half-width of this spread εip (Fig. 7) is used to define a Gaussian
noise distribution N (0, ε2

i p), that is, with zero mean and standard
deviation εip. A random sample from this noise distribution is added
to every synthetic datum. The scatter in the data may be small if
few data are available, which would result in an unrealistically low
noise estimate. Therefore, we impose a minimum phase-specific
noise level (Table 4), which is based on measurement error esti-
mates documented in a recent ISC report (ISC 2008).

4.4 Data processing

The input d to the neural network is a concatenation of the trav-
eltime curves for the different phases. Since the curves are rather
smooth, a large (linear) correlation exists between the traveltime at
different epicentral distances. Therefore, we sample the traveltime
curves at intervals of 2◦. This reduces the size of the input vector
and thus the number of network parameters, thereby making net-
work training faster. In light of the strong correlations, we assume
that this downsampling does not result in a significant loss of in-
formation on our earth model. The resulting input vector consists
of 152 traveltimes, which is a concatenation of the data for the Pn

Table 3. Epicentral distance range for the seismic phases. The ranges used by Kennett
et al. (1995) are added as a reference.

Distance range (◦) Pn P PP PKPab PKPbc PKPdf

This study 3:18 25:88 50:173 145:174 145:155 122:179

Kennett et al. (1995) – 25:99 53:180 156:178 151:153 118:180
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8 R. W. L. de Wit, A. P. Valentine and J. Trampert

Figure 8. Examples of noisy synthetic traveltime data that form the input
to the network. The synthetic data are sampled at distance intervals of 2◦
for the epicentral distance ranges specified in Table 3. Note the zeros in the
traveltime curves, which indicate that TauP did not compute an arrival at the
corresponding distance.

(8 traveltime measurements), P (32), PP (62), PKPab (15), PKPbc
(6) and PKPdf (29) phases.

For every synthetic model, the input pattern is constructed by
sampling the synthetic data at 2◦ intervals and subsequently adding
a random noise sample (Fig. 8). The input vectors for the observed
data are constructed in a slightly different fashion. For each dis-
tance sample dip, with phase p and epicentral distance i, we extract
all observations from the EHB data for which the epicentral distance
lies within the range dip ± εdist, where εdist = 0.1◦ as before. Con-
sequently, multiple EHB observations are available at each distance
point. We draw one random sample from these multiple possibil-
ities. This yields the EHB traveltime curves that serve as input to
the trained networks (Fig. 9). The differences between these curves
are regarded as noise (see Section 4.3). The variations in the real
data vectors are significantly smaller than the variations in synthetic
training patterns (cf. Fig. 8). Both observed and synthetic data con-
tain noise, but the variations in the synthetic data are larger due to
the differences in the underlying synthetic earth models.

Figure 9. Ten input patterns, which are constructed from the EHB data
(Fig. 5). Note that the variation in these real data vectors is significantly
smaller than the variations between synthetic training patterns (Fig. 8).

Note that upon applying a trained network to one input pattern
for the EHB data, only 152 measurements are ‘inverted’. For a
given distance and phase, however, all available observations should
contain the same information on the radial earth model, given the
measurement noise defined above. When repeated with a different
EHB input pattern, constructed as described here, the inversion
should yield similar results.

5 R E S U LT S

We present inversion results for all 22 P-wave velocity and seven
discontinuity depth parameters. For each model parameter mi, we
investigate the constraint that is provided by the traveltime data and
quantify the associated uncertainty. We therefore train MDNs on
1-D target vectors m′ = mi (eq. 2). Since all model parameters are
allowed to vary in the synthetic models, the output of each MDN
forms a 1-D marginal posterior pdf σ (mi |d). This is equivalent to
marginalizing the full joint posterior pdf σ (m|d) over all model
parameters other than mi via the integration in eq. (2). σ (mi |d)
reflects our knowledge of mi given the variations in the other 28
model parameters.

5.1 Network configuration

For all results presented in this study, we train MDNs with 40 hidden
units and a Gaussian mixture consisting of 15 Gaussian kernels
(M = 15). We verified that the precise number of hidden units is not
of paramount importance to final network performance. The same
applies to the number of Gaussian kernels. During training, the
mixing coefficient αj can be set close to zero for redundant kernels,
or kernels can be combined by having a similar mean and variance
(Bishop 1995).

For a 1-D target (c = 1), the MDN has (c + 2) · M = 45 output
parameters: the means μj, the variances σ 2

j and the mixing coeffi-
cients αj (eqs 5 and 6). In combination with the 152-D input pattern
(Figs 8 and 9), the corresponding MLP has 7725 free parameters
(the weights w

(1)
i j and w

(2)
jk and biases b(1)

j and b(2)
k in Fig. 1). We

use 80 per cent of the 99 862 patterns in the synthetic data set for
training, 15 per cent for the validation set, which is used to evaluate
the early stopping criterion, and the remaining 5 per cent for the test
set.

Theoretically, there is no limit to the size of a neural network.
However, a larger network consists of more free parameters and thus
takes longer to train. More importantly, more network parameters
require a larger training set to succesfully train the network. There-
fore, computational facilities restrict the network size. In general,
the number of free parameters should not exceed the number of
training patterns (e.g. Bishop 1995; Duda et al. 2001). In this study,
we ensure that the training set is approximately a factor of 10 larger
than the number of network parameters. The main computational
requirement thus lies in the generation of synthetic training patterns,
that is, repetitively solving the forward problem. For the ∼100 000
patterns, this took ∼100 hr on a standard desktop computer. Once
the training set is available, network training is relatively fast: the
training time for a single network is on the order of tens of minutes
in this study.

Due to the random initialization of the network weights, the
optimization algorithm can become stuck in local minima of the er-
ror surface. To verify that network training converges properly, we
train 30 independent networks. For each of these networks, training
commences at a different point in weight space due to the random
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Neural networks for traveltime inversion 9

Figure 10. 1-D marginal posterior pdf (blue line), prior pdf (red) and true model value (black, dashed) for one pattern in the test data set for VP (left-hand
frame) directly above the ICB, (middle frame) directly above the 210 km discontinuity and (right-hand frame) in the lower crust.

initialization. To reduce the chance of overfitting, all synthetic pat-
terns are divided randomly over the training, validation and test sets
before the training of each independent network commences. We
find that results for the 30 independent networks are similar and
choose the network that produces the lowest pattern-averaged error
for the test set.

5.2 Network evaluation

For each VP parameter, we apply the optimal MDN to the ∼5000
patterns in the synthetic test set, which are not used for network
training. Network performance can be evaluated by comparing the
resulting ∼5000 1-D marginal pdfs with the true synthetic model
value. As an example, we show 1-D marginal posterior pdfs for
one test pattern for three model parameters: VP directly above the
ICB, directly above the 210 km discontinuity and in the lower crust
(Fig. 10). For the P-wave velocity near the ICB (left-hand frame)
and 210 km discontinuity (middle frame), most probability mass
in the posterior distribution lies close to the target value (black
line). We conclude that network performance is accurate for this
particular input pattern. It is clear from the marginal pdf of VP in
the lower crust (right-hand frame) that the traveltime data do not
constrain this part of the model. Consequently, the MDN output
represents the uniform prior distribution for this parameter. The
difference between the MDN output and the true uniform prior
pdf is due to the fixed shape of the finite number of Gaussian
kernels.

It is difficult to quantitatively evaluate network performance from
such marginal distributions, however. A more pragmatic validation
method is to analyse the correlation between the target value and
the mean of the dominant Gaussian kernel in the MDN output
(Bishop 1995). We take the kernel associated with the largest mixing
coefficient αj (eq. 5) to be dominant. Although this simple measure
ignores the information provided in the full posterior pdf, such an
analysis provides a practical way of evaluating the trained networks.

For all 22 VP parameters, Fig. 11 shows the mean μj of the dom-
inant Gaussian kernel versus the true target value for all patterns
in the test data set. Every row in the figure represents a region
between two discontinuities, with the depth of the VP parameter
(knot) decreasing from left to right. The corresponding correlation
coefficient R is given above every frame (R = 0 indicates no cor-
relation, whereas R = 1 represents a perfect correlation). Network
performance on these unseen input patterns is good (R ≥ 0.87) for
the P-wave velocity in the inner and outer core and lower mantle
(first, second and fourth row, respectively). For VP in the D′′ layer
(third row), the upper mantle (fifth and sixth row) and crust (bottom
row), correlations are in general low or absent (R ≈ 0).

Besides network evaluation, the performance on synthetic input
is a good indicator of the constraint that the data provide on the
model. For the P-wave velocity directly above the ICB, for instance,

the 1-D marginal posterior pdf is unimodal and narrow relative to
the width of the prior pdf (left-hand frame, Fig. 10). This parameter
is constrained well by the data, as indicated by R = 0.94 in Fig. 11
(second row, first column). Conversely, for VP in the lower crust
the mean of the ‘dominant’ kernel does not relate to the true value
(R = 0.05, Fig. 11, seventh row, first column). The traveltime data
do not constrain this part of the model, as is apparent from the
corresponding marginal pdf in Fig. 10 (right).

One can expect similar results, for both resolved and unresolved
model parameters, when applying the trained networks to the ob-
served traveltime data. As the data provide very little or no constraint
on the seven discontinuity depth parameters, we do not show the cor-
responding performance on the test set here and restrict ourselves
to the application to the EHB data for these parameters.

5.3 Application to EHB data

Fig. 12 shows 1-D marginal pdfs for P-wave velocities for the ten
EHB input patterns in Fig. 9. Recall that these ten input patterns
are random realizations from the available EHB data set, as de-
scribed in Section 4.4. The differences between these input patterns
are regarded as noise. The network should be insensitive to such
variations, since we have used a similar noise level during network
training. Consequently, network output should be approximately the
same for these different input vectors.

The data constrain VP in the outer core (OC) and lower mantle
(LM) best (second and fourth row, respectively). PKPdf, the only
seismic phase in our data set that is sensitive to the inner core (IC),
constrains VP in this region (first row). The most notable feature is
the proximity of the posterior maxima to the ak135 values, which
are indicated by the green dashed lines. However, in addition to
a most likely model value, we obtain uncertainties in the P-wave
velocity estimate. Recall that our posterior pdfs are based on our
conservative prior pdfs and are therefore taken to be independent of
the actual values in the ak135 model.

For each VP parameter in the inner core, outer core and lower
mantle, we extract statistics from the ten posterior distributions in
Fig. 12. Since the ten distributions are similar for these parameters,
we calculate the mathematical expectation 〈VP〉 and standard devi-
ation σVP of the 10 pdfs combined (Table 5). When expressed as a
percentage of the mean 〈VP〉, the standard deviation of the posterior
pdfs σVP is smaller than 1 per cent for every model parameter. The
corresponding ak135 values are given as a reference and lie within
one standard deviation from 〈VP〉 for the parameters in Table 5,
except for m2,3

LM in the lower mantle, for which ak135 lies within
two standard deviations. It is difficult to compare the uncertainties
found here, represented by the standard deviations σVP , as uncer-
tainty estimates are scarce in the literature. Kennett et al. (1995)
used a non-linear search procedure to evaluate a range of models
around ak135 for various data misfit measures. They used velocity
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10 R. W. L. de Wit, A. P. Valentine and J. Trampert

Figure 11. Mean μj (eq. 6) of the dominant Gaussian kernel (maximum αj in eq. 5), labelled μdom in the figure, versus the true synthetic value for all patterns
in the test data set for the 22 VP parameters (Tables 1 and 2). The regions between discontinuities are displayed on different rows. For every region, depth
decreases from left to right in the figure. The corresponding correlation coefficient R is given above each frame.

bounds of ±0.02 km s−1 for the lower mantle and ±0.04 km s−1 for
the lowermost mantle and core. The σVP values we find here are on
the order of these velocity bounds or a factor of 2–3 larger (Table 5).
We emphasize that our uncertainty estimates are not representative
of the uncertainties in ak135, given the differences in the data se-
lection and the model parametrization. However, the constraint on
individual model parameters, as investigated here, may be indicative
of the uncertainties in ak135 and similar models.

The 1-D marginals for VP between the Moho and the 210 km
discontinuity (Fig. 12, sixth row) indicate that the traveltime data
contain some information on this region. We find that this is

mainly due to the addition of the Pn phase, which refracts along
the Moho. The data indicate a (very) weak preference for veloc-
ities slightly higher than in ak135. We should point out, how-
ever, that the posterior distributions include all but the very low
P-wave velocities. Thus, for these model parameters the data can-
not falsify any of the assumptions on VP contained in our model
prior.

The data contain no or at most a very limited signal on the pa-
rameters of the D′′ layer (third row, Fig. 12), the transition zone
(TZ, fifth row), the region between the 410 and 210 km discontinu-
ities (410–210, fifth row) and the two homogeneous crustal layers
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Neural networks for traveltime inversion 11

Figure 12. 1-D marginal posterior pdf (blue line), prior pdf (red) for the 22 VP parameters (Tables 1 and 2). The same trained networks as used for Fig. 10
are applied to ten different EHB input patterns (Fig. 9). The regions between discontinuities are displayed on different rows. For every region, depth decreases
from left to right in the figure. Note that the range of the vertical axis, that is, normalized probability, differs between rows.

(seventh row). The poor constraint on upper mantle structure is not
surprising, given the teleseismic epicentral distances for which P
(above 25◦) and PP (above 50◦) traveltimes are used (Table 3).

The traveltime data we invert here contain practically no infor-
mation on the depth of the discontinuities (Fig. 13). For the upper

mantle, this may be explained by the near-vertical incidence un-
der which the teleseismic rays travel through the discontinuities in
this region. The inclusion of phases that reflect of discontinuities,
for example, PcP, which reflects of the CMB, could improve the
constraint on discontinuity depths.
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Table 5. Mean 〈VP〉 and standard deviation σVP of the ten
1-D marginal posterior pdfs for the P-wave velocity pa-
rameters (Fig. 12) in the inner core (IC), outer core (OC)
and lower mantle (LM). All values are in (km s−1), except
for the fourth column, which shows the standard deviation
σVP as a percentage of the mean 〈VP〉. The corresponding
value in ak135 is given for comparison (V ak135

P ). Recall that
the depth of the knots mi decreases with decreasing index
number i (see Tables 1 and 2).

Parameter 〈VP〉 σVP σVP (per cent) V ak135
P

m3
IC 11.248 0.107 0.952 11.265

m2
IC 11.229 0.066 0.589 11.215

m1
IC 11.063 0.081 0.736 11.040

m4
OC 10.266 0.056 0.545 10.290

m3
OC 9.899 0.030 0.304 9.870

m2
OC 9.201 0.043 0.466 9.210

m1
OC 8.004 0.041 0.506 8.000

m4
LM 13.638 0.086 0.629 13.650

m3
LM 12.819 0.031 0.239 12.860

m2
LM 12.034 0.039 0.320 11.995

m1
LM 10.793 0.057 0.528 10.790

6 D I S C U S S I O N

We trained neural networks to invert P-wave traveltime data for the
radial P-wave velocity structure of the Earth. We obtained a contin-
uous probabilistic description of the individual model parameters
from the conjunction of our prior knowledge with the information
contained in the data. The 1-D marginal posterior pdfs enable us to
assess the uncertainty in the model parameters, which reflects the
non-uniqueness of the non-linear inverse problem.

A visual comparison of the prior and posterior pdfs enables us to
assess how well a model parameter is resolved by the data. Alter-
natively, one can quantify the constraint on a model parameter by
comparing the information content of the prior and posterior pdfs
(Tarantola & Valette 1982), as was done by for instance Meier et al.
(2007b). Quantifying the information content, or gain, is useful

when quantitatively comparing the resolving power of various data
types or when it is not possible to show the posterior pdfs for all
model parameters. We do not include such a measure in this study,
as we explicitly show the prior and posterior distributions for all 29
model parameters (Figs 12 and 13).

We use neural networks as an alternative to Monte Carlo meth-
ods. A succesful comparison of the two types of technique was
presented by for instance Meier et al. (2007a); Shahraeeni & Curtis
(2011). The ∼100 000 samples in our data set can be used to sample
the posterior pdf with the straightforward Independent Metropolis–
Hastings algorithm. However, we find that the data set is insufficient
to produce robust results. To obtain the posterior pdf, we would need
many more samples or a more sophisticated approach, such as the
Neighbourhood Algorithm (Sambridge 1999a). This illustrates the
efficiency of the neural network to interpolate between the limited
number of available samples

In general, the deeper parts of the model (inner and outer core,
lower mantle) are constrained well by the data and the corresponding
posterior pdfs contain VP values similar to those in ak135 (Kennett
et al. 1995). By contrast, the same data provide little informa-
tion on the upper mantle VP structure and the depth of disconti-
nuities in the radial VP profile. Kennett et al. (1995) derived the
ak135 model from the traveltime data provided by the ISC. They
used the same phases as we use here, except for Pn, and in addi-
tion used PcP, PKKP, P′P′ (PKPPKP) and the converted phases
ScP and SP. The inclusion of such complimentary phases could
have enhanced our knowledge on parts of the VP model. These
phases, however, are not included in the EHB bulletin for 2001–
2008 and we decided to restrict our inversion to the phases listed in
Table 3.

Ideally, the output for all ten input patterns in Figs 12 and 13
is similar (see Section 4.4). This is the case for the well-resolved
parameters in the outer core and lower mantle. Differences between
the posterior pdfs are larger for the inner core parameters, as they
are for the P-wave velocity in the uppermost mantle (210–Moho).
The trained networks are thus not completely insensitive to random
variations in the input on the order of the noise level. In our view,
however, these differences are minor and we argue that similar

Figure 13. 1-D marginal posterior pdf (blue line), prior pdf (red) for the seven discontinuity depths (Table 1). Trained networks are applied to 10 different
EHB input patterns (Fig. 9).
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Figure 14. Construction of 2-D marginal posterior pdfs via eq. (9) for (first row) VP at the top of the inner core (m1
IC) and the ICB depth (dICB) and (second

row) VP in the lower mantle (m1
LM and m2

LM). See Tables 1 and 2 for the model parametrization. The three panels in each row show (left-hand panel) the 1-D
marginal pdf, (middle panel) the conditional pdf and (right-hand panel) the 2-D marginal pdf for one of the patterns in the test set. Lighter colours denote
higher probabilities. The corresponding target values are denoted by the black line (left-hand panel) and the cyan star (right-hand panel).

inferences would be drawn from the ten 1-D marginal posterior
pdfs for these parameters.

For all parameters, the networks have been trained on the same
type of traveltime data as input. Obviously, any information redun-
dancy between the individual units in the input pattern is inefficient
from the perspective of network training. This is the case for the
inner core parameters, for which we know only PKPdf carries in-
formation. It would thus be most efficient if the networks trained
for the inner core parameters would only take PKPdf as input. We
verified that prediction accuracy is similar, regardless of whether
the networks are trained on the full input pattern or only on PKPdf
traveltimes. Thus, network training is able to focus on the system-
atic relation between the PKPdf data and the inner core P-wave
velocities.

Our final results comprise the 1-D marginal posterior pdfs
σ (mi |d) of the model parameters mi. These represent all available
knowledge on the individual model parameters, given the travel-
time data, associated measurement errors, our choices regarding
the model parametrization and the variations in the other model pa-
rameters. Such 1-D distributions do not contain information on any
correlations between model parameters. Further, we emphasize that
the maximum likelihood values of the individual model parameters,
when taken together, do not necessarily represent the maximum like-
lihood model. Therefore, it is often desirable to analyse the joint
posterior pdf, that is, the posterior probability distribution of the
full model σ (m|d) (eq. 1). This distribution could be obtained by
training a network on the complete 29-D model m. Such a network,
however, would contain a lot of free parameters and thus require a
large training set. Further, network training may converge slowly or
not at all for such a high-dimensional target space.

Alternatively, a joint distribution for an n-dimensional model can
be constructed from the product of conditional and marginal pdfs
(e.g. Tarantola 2005)

σ (m1, . . . , mn |d) = σ (mn|m1, . . . , mn−1, d)

× σ (m1, . . . , mn−1|d). (9)

For each pdf in the r.h.s. product, a separate network would be
trained. Note that it is straightforward to train networks on condi-
tional pdfs such as σ (mn|m1, . . . , mn−1, d). This only requires the
input pattern to be extended with the model parameters on which
the distribution is conditioned. Once successfully approximated, the
joint pdf has to be sampled to analyse its properties. This requires
the evaluation of the individual pdfs in the decomposition for many
random model realizations and performing the necessary multipli-
cation following eq. (9). This can be done efficiently, as for every
trained network computing the probability for a specific input da-
tum and model value is very fast, that is, consumes a fraction of
a second on a standard desktop computer. By doing so, one can
approximate the joint posterior model distribution via eq. (9) and
construct a representative ensemble of models. This will aid the in-
terpretation of the information on Earth structure that is contained
in seismological data.

As a simple example, we construct 2-D marginal posterior pdfs
using eq. (9), that is, for a 2-D m′ (eq. 2), for one of the patterns
in the test set. Fig. 14 shows the three distributions in eq. (9) for
two different combinations of parameters: VP at the top of the in-
ner core (m1

IC) and the ICB depth dICB (first row) and VP in the
lower mantle (m1

LM and m2
LM, second row). The inner core VP is re-

solved well, whereas the ICB depth is unresolved, as was apparent
from the 1-D marginals in Figs 12 and 13. No correlation between
these parameters is observed in the 2-D marginal pdf (Fig. 14).
The two shallowest VP parameters in the lower mantle are resolved
well (cf. Fig. 12, fourth row). Despite the good constraint provided
by the data, a (weak) positive correlation between the two param-
eters is visible in the corresponding 2-D marginal posterior pdf
(Fig. 14).

7 C O N C LU D I N G R E M A R K S

We used artifical neural networks to solve a non-linear Bayesian
inverse problem. Neural networks are flexible and can be used to
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approximate an arbitrary function. No linearization or model damp-
ing is required, which allows for an optimal use of the information on
the model that is contained in the data. We used an MDN to acquire a
continuous probabilistic description of each model parameter. Each
1-D marginal posterior pdf represents our knowledge of the pa-
rameter and provides the necessary quantification of uncertainties,
which plays a crucial role in any interpretation of seismological
models.

We investigated the information on the Earth’s radial P-wave ve-
locity structure that is available in the EHB traveltime data for the
Pn, P, PP, PKPab, PKPbc and PKPdf phases. Our results comprise
1-D marginal posterior probabiliy distributions for the 22 VP pa-
rameters and seven discontinuity depths in our model. These 1-D
marginal pdfs enable us to assess the uncertainty in the individual
model parameters. We have shown how the method can be extended
to obtain a posterior pdf for a multidimensional model space. This
enables us to investigate potential correlations between model pa-
rameters.

The P-wave velocities in the inner core, outer core and lower
mantle are resolved well, that is, standard deviations of ∼0.2 to
1 per cent with respect to the means of the 1-D marginal posterior
pdfs. The maximum likelihoods of VP are in general similar to the
corresponding ak135 values, which lie within one or two standard
deviations from the means of the posterior pdfs (Table 5). This
provides an independent validation of this part of the ak135 model,
which is often used in 3-D seismic tomography and earthquake loca-
tion algorithms. Conversely, the data contain little or no information
on P-wave velocity in the D′′ layer, the upper mantle and the homo-
geneous crustal layers. For the upper mantle, this is not surprising,
given that the traveltime data used here are of a teleseismic nature,
that is, >25◦ epicentral distance. Using additional phases available
in the ISC bulletin, such as PcP, PKKP and the converted phases SP
and ScP, may enhance the resolvability of our model parameters.
However, the major phases we used here give a good indication
of how much information on the radial VP structure is contained
in typical body-wave traveltime data. We included Pn, which led
to a weak constraint on the VP structure in the uppermost mantle.
The data do not constrain the depth of the discontinuities in our
model. Again, this is common knowledge, as teleseismic rays tend
to travel perpendicular to discontinuities and thus provide a poor
sampling of these structures. Reflected phases, such as PcP, which
reflects of the CMB, are known to contain much more information
on discontinuities.

Seismograms contain more information on the seismic source
and the Earth’s structure. We aim to apply Mixture Density
Networks to Bayesian seismic waveform inversion in the fu-
ture. However, for such an application the dimensionality of the
data is much larger than for the traveltime inversion performed
in this study, which presents additional challenges that must be
overcome.
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A P P E N D I X A : DATA P R E - P RO C E S S I N G

We process the input data x to have zero mean and unit variance for
each input neuron xi, which is commonly referred to as standardizing
(Bishop 1995):

x̄i = 1

N

N∑
n=1

xn
i (A1)

Var(xi ) = 1

N − 1

N∑
n=1

(
xn

i − x̄i

)2
, (A2)

where i = 1, . . . , I denotes the input units (Fig. 1) and n = 1, . . . ,
N labels the patterns in the training data set. We can then apply a
linear transformation so that we obtain a set of rescaled variables
given by

x̃ n
i = xn

i − x̄i

[Var(xi )]1/2
. (A3)

Note that as long as the same linear transformation is applied to
every pattern in the data set, the information content of the data set
is not altered.

In addition to pre-processing the input, we find that it is beneficial
to pre-process the target data and thus perform a similar operation as
in eq. (A3) to the target data. Obviously, this linear transformation
turns the targets into dimensionless numbers. Therefore, once the
network is trained we reverse the linear transformation in eq. (A3)
and apply it to the Gaussian kernel means μ j and standard deviations
σ j in the MDN output (eq. 6). By doing so, these parameters are
given in the true physical dimensions of the earth model parameters.
We do not correct the standard deviations σ j for the translation
in eq. (A3), however, as the variance of a probability distribution
is invariant under translations. The mixing coefficients αj are not
transformed, as they are dimensionless and sum to one due to the
application of the softmax function (Bishop 1995).

Note that the validation and test sets are pre-processed following
eq. (A3) by using the mean xi and the variance Var(xi) calculated for
the training data set (eqs A1 and A2). Thus the same transformation
is applied to the three different synthetic data sets. The same is true
for the observed data.
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