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S U M M A R Y
By starting from a general framework for probabilistic continuous inversion (developed in
Part I) and introducing discrete basis functions, we obtain the well-known algorithms for
probabilistic least-squares inversion set out by Tarantola & Valette. In doing so, we establish a
direct equivalence between the spatial covariance function that must be specified in continuous
inversion, and the combination of basis functions and prior covariance matrix that must be
chosen for discretized inversion. We show that the common choice of Tikhonov regularization
(C−1

m = σ 2I) arises from a delta-function spatial covariance, and that this lies behind many of
the artefacts commonly associated with discretized inversion. We show that other choices of
spatial covariance function can be used to generate regularization matrices yielding substan-
tially better results, and permitting localization of features even if global basis functions are
used. We are also able to offer a straightforward explanation for the spectral leakage problem
identified by Trampert & Snieder.
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1 I N T RO D U C T I O N

Discrete inverse theory—particularly inversion based upon the
least-squares algorithm—underpins much research in geophysics.
As practitioners are well-aware, many choices must be made when
setting up and solving an inverse problem, and different decisions
can lead to different results (e.g. Boschi & Dziewoński 1999; Valen-
tine & Trampert 2016). Particularly influential are choices surround-
ing model parametrization, and regularization, which together de-
termine many of the characteristics of the eventual solution. In
deciding to use a particular finite set of basis functions, we impose
strong restrictions on the range of features that may appear within
the recovered model; in selecting a regularization scheme, we bias
the inversion towards solutions of a certain style. Clearly, under-
standing the consequences of such decisions is essential if we are
to construct useful models, and interpret them correctly.

In Part I of this two-part paper (Valentine & Sambridge 2019),
we set out a framework for continuous inverse theory, building on
the statistical theory of Gaussian Processes (GPs). This circum-
vents the need to identify an appropriate set of basis functions
prior to inversion. Instead, the solution is represented by a partic-
ular class of stochastic process, with prior information specified
via a user-defined covariance function which encodes information
about—for example—the characteristic length scales and correla-
tions desired for the recovered model. Helpfully, this covariance
function is defined relative to physical space, rather than an ab-
stract ‘model space’, potentially making it easier to appreciate the
relationship between prior information and results. However, the
computational cost of the approach scales with the number of data,
potentially limiting its application to large-scale problems.

In this paper—Part II—we demonstrate that if the GP approach
is approximated by expanding quantities relative to a finite set of
a basis functions, the familiar equations of probabilistic, discrete
least-squares (e.g. Tarantola & Valette 1982) emerge. In particular,
there is a duality between the choice of covariance function in the
GP framework, and the twin choices of parametrization and regular-
ization required within the discrete framework. Thus, for any choice
of regularization and parametrization, one may compute the implied
covariance function to assist with interpretation; equally, one may
compute the regularization matrix required to impose a particular
correlation function onto the recovered model. This indicates that
it is possible to access the practical benefits associated with the GP
approach, while continuing to work within a computationally effi-
cient parametrized setting, and offers new strategies for approaching
regularization in discrete settings. The equivalence between the two
approaches is also helpful from a theoretical perspective, allow-
ing analysis to be carried out in the continuous domain and then
discretized.

In particular, a common challenge in the geosciences involves
estimation of spectral properties of (largely) continuous functions,
such as gravitational or magnetic fields, or the internal seismic
velocity structure of the Earth. This is commonly approached by
expressing the unknown field in terms of a set of basis functions
(often spherical harmonics), using available data to constrain the ex-
pansion coefficients (e.g. Whaler & Gubbins 1981; Woodhouse &
Dziewonski 1984; Reigber et al. 2005; Hoggard et al. 2016; Davies
et al. 2019). However, a number of practical difficulties arise: it is
difficult to ensure robust results in circumstances where the signal of
interest may have unknown spectral bandwidth, and where observa-
tional constraints are often incompletely and unevenly distributed.
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Much research has focussed on attempting to quantify and mitigate
the errors and biases that may arise (e.g. Kaula 1967; Trampert &
Snieder 1996; Simons et al. 2002; Schachtschneider et al. 2010);
and ensuring that results are comparable across multiple data sets
(e.g. Slobbe et al. 2012). The opportunity to analyse such issues
without discretization as an initial step offers new insights, and
potentially new strategies for ensuring robust results.

In order to make this paper accessible to readers who have not
studied Part I, we begin by restating a number of key results and
definitions from that paper. We then show that these can be used
to derive the results of Tarantola & Valette (1982): in effect, the
GP framework may be regarded as the limiting case of Tarantola &
Valette (1982) as the model-space dimension tends to infinity. We
discuss how this equivalence may be used to inform the regulariza-
tion of least-squares inversion, and demonstrate that the common
choice of Tikhonov regularization has undesirable, but avoidable,
consequences. Finally, we consider the ‘spectral leakage’ problem
identified by Trampert & Snieder (1996) and others, and show that
this can be readily understood within our framework.

2 T H E O R E T I C A L D E V E L O P M E N T

We will assume that f(x) is some function that is sought through in-
version: although our notation suggests that this is a scalar function
of a single variable, all our analysis translates straightforwardly to
higher-dimensional settings. Our data set consists of N measure-
ments, d1. . . N, which are assumed to be related to f(x) by (cf. Part I
eq. 10)

di =
∫
X

wi (x) f (x) dx . (1)

Our prior knowledge about f(x) is that f (x) ∼ GP(μ(x), k(x, x ′)),
for some mean function μ and covariance function k—that is, f is
described by a GP, essentially an extension of the familiar Gaussian
distribution into function spaces. Conditioning this prior upon the
data allows us to obtain a posterior distribution (Part I eqs 14–15)

f (x) | d ∼ GP(μ̃(x), k̃(x, x ′)), (2a)

where

μ̃(x) = μ(x) + ŵT(x)
(
Ŵ + Cd

)−1 (
d̂ − ω̂

)
(2b)

k̃(x, x ′) = k(x, x ′) − ŵT(x)
(
Ŵ + Cd

)−1
ŵ(x ′) , (2c)

with tildes used to denote posterior quantities, and (Part I ,eq. 13)

[ω̂]i =
∫
X

wi (u)μ(u) du (3a)

[ŵ(x)]i =
∫
X

wi (u)k(u, x) du (3b)

[
Ŵ

]
i j

=
∫∫

X 2
wi (u)k(u, v)w j (v) du dv . (3c)

The ‘hats’ on these quantities are used to emphasize that they depend
upon the details of the observations made, as the wi may vary
according to—for example—the locations at which data is collected.
For a full discussion and derivation of the above results, the reader
is referred to Part I.

2.1 Expansion in a finite basis

We now introduce a set of M basis functions, φi(x), i = 1. . . M,
defined appropriately for the space of interest. For notational con-
venience, we collect these into a single vector function, �(x), such

that [�(x)]i = φi (x). The Gram matrix for this basis is denoted by
�, defined such that

�i j =
∫

φi (x)φ j (x) dx , (4)

and we assume that the inverse of this matrix can be stably found.
Any function ζ (x) can be expressed as an expansion relative to this
basis,

ζ (x) ≈
∑

i

ζiφi (x), (5)

where the approximation arises because ζ (x) will—in general—
contain features that cannot be expressed within the finite-
dimensional basis. The coefficients ζ i can be computed as

ζi =
∑

j

[
�−1

]
i j

∫
ζ (x)φ j (x) dx . (6)

Similarly, a function of two spatial variables, ξ (x, x′) can be ex-
pressed using a double expansion,

ξ (x, x ′) ≈
∑

i j

�i jφi (x)φ j (x
′), (7)

where

�i j =
∑

kl

[
�−1

]
ik

[
�−1

]
jl

∫∫
ξ (x, x ′)φk(x)φl (x

′) dx dx ′ . (8)

For simplicity, and because it is overwhelmingly the case encoun-
tered in practice, we will henceforth assume that the basis functions
used are orthonormal. This implies that � = I, and hence the in-
verse Gram matrix can be dropped from the expressions for the
expansion coefficients.

2.1.1 Exact expansion

Since linear transformations preserve Gaussian statistics, it is ap-
parent that expressing the GP solution in the basis should result in
a Gaussian distribution of model coefficients. We therefore write
f (x) | d ∼ �T(x) · N (m̃, C̃). Applying eq. (6), we see that

m̃i = mi +
∑

j

ψi j

[(
Ŵ + Cd

)−1 (
d̂ − ω̂

)]
j

(9a)

C̃i j = Ci j −
∑

kl

ψikψ jl

[(
Ŵ + Cd

)−1
]

kl
, (9b)

where mi and Cij are the expansion coefficients for the prior and
covariance functions, respectively, and where ψ ij represents the
expansion coefficients of ŵ(x) within the basis,

mi =
∫

μ(x)φi (x) dx (10a)

Ci j =
∫∫

φi (x)k(x, x ′)φ j (x
′) dx dx ′ (10b)

ψi j =
∫∫

φi (x)k(x, u)w j (u) dx du . (10c)

Using these expressions, the exact expansion of the GP solution
within any set of basis functions may be found. Note that our use of
the word ‘exact’ here does not preclude some truncation error: the
GP solution may include features that are not representable using the
finite set of basis functions. However, the coefficients are exact in
the sense that they accurately represent that part of the GP solution
that is representable: they will not change if the dimension of the
basis set is altered.
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2.1.2 Approximate expansion

To proceed further, we wish to expand the functions k(x, x′) and wi(x)
in terms of the finite basis. In general, these will have some com-
ponent that cannot be expressed within the basis, and we therefore
write

k(x, x ′) =
∑

i j

Ci jφi (x)φ j (x
′) + εk(x, x ′) (11a)

wi (x) =
∑

j

Gi jφ j (x) + ε(i)
w (x) (11b)

with the ε terms representing the part of the function that lies outside
the basis. It is then possible to show that

ψi j = [
CGT + P

]
i j

(12a)

[
Ŵ

]
i j

= [
GCGT + GP + (GP)T + Q

]
i j

, (12b)

where we have introduced P and Q having elements

Pi j =
∫∫

φi (u)εk(u, v)ε( j)
w (v) du dv (12c)

Qi j =
∫∫

ε(i)
w (u)εk(u, v)ε( j)

w (v) du dv (12d)

to represent the ‘error terms’. We emphasize that these quantities
are not necessarily ‘small’: their significance depends entirely on
the details of the problem under consideration.

If, nevertheless, P and Q are deemed negligible in a particu-
lar case—in other words, we think that the basis is adequate for
representing all quantities—we obtain

m̃′ = m + CGT
(
GCGT + Cd

)−1 (
d̂ − Gm

)
(13a)

C̃′ = C − CGT
(
GCGT + Cd

)−1
GC , (13b)

where we have used primed quantities are to distinguish between
approximate and exact theories. Eq. (13) will no doubt appear fa-
miliar to many readers: it has the form of the well-known result from
Tarantola & Valette (1982) for least-squares inversion ‘in the data
space’, for the case where the prior on model coefficients is given
by N (m, C). As those authors show, application of the Woodbury
matrix identity allows these expressions to be transformed into ‘the
model space’,

m̃′ = m + (
GTC−1

d G + C−1
)−1

GTC−1
d

(
d̂ − Gm

)
(14a)

C̃′ = (
GTC−1

d G + C−1
)−1

. (14b)

This form is often more amenable to computations, since the matrix
to be inverted is typically smaller.

3 D I S C U S S I O N

Some consequences of the analysis thus far deserve to be high-
lighted:

(i) The work of Tarantola & Valette (1982) can be viewed as
the finite-dimensional, discretized, analogue of the probabilistic,
continuous inverse theory developed in Part I;

(ii) Any continuous inversion can be represented approximately
within a finite-dimensional basis, by adopting m and C according
to eq. (10) and using the results of Tarantola & Valette (1982);

(iii) Any discrete inversion can be replicated exactly within the
continuous framework of Part I, by choosing μ(x) = �T(x)m and
k(x, x ′) = �T(x)C�(x ′).

If a continuous inversion is approximated within a finite basis
using the least-squares approach, the result will be biased through
the omission of the terms involving P and Q. This is essentially the
root of the problem of ‘spectral leakage’, discussed by Trampert
& Snieder (1996), and we will consider this in more detail in due
course.

3.1 Choosing discrete prior covariance matrices

However, we first consider the duality between the (discrete) prior
model covariance matrix C, and the (continuous) prior covariance
function, k(x, x′). A perennial practical question concerns the ‘cor-
rect’ way to choose C in any discrete inversion: often, our prior
knowledge about the problem is not in a form conducive to speci-
fying this covariance matrix. The same problem, couched in differ-
ent language, arises in deterministic discrete inversion: how does
one regularize the inversion? Various schemes have been proposed,
including analysis of trade-off curves (e.g. Hansen & O’Leary
1993) and treating regularization as a hierarchical Bayesian prob-
lem (Valentine & Sambridge 2018); nevertheless, issues surround-
ing regularization continue to create difficulties for inversion and
the interpretation of results.

One challenge in specifying the prior covariance matrix is its
abstract nature: since it exists in model-space, it is difficult to de-
velop any intuition for how different choices will impact results.
However, the results of this paper show that it can be easily trans-
formed into physical space, using k(x, x ′) = �T(x)C�(x ′). We sug-
gest that intuition should be much more straightforward in this do-
main. Loosely, the covariance function describes how information
about f(x) at one point constrains our knowledge of surrounding
points: thus, the suitability of a given covariance function can be
assessed based on knowledge of the physical properties of the sys-
tem of interest, and the length-scales over which correlations are to
be expected. The problem can also be approached from the oppo-
site direction: if a particular spatial covariance function is desired,
it is straightforward to use eq. (10) to compute the corresponding
model covariance matrix. Of course, it will not usually be possible
to exactly reproduce the desired covariance within the finite basis—
but this may be an acceptable price to pay for the computational
efficiency of eq. (14).

This highlights an important distinction: we will refer to a desired
covariance function, from which a covariance matrix is constructed
following eq. (10b), and an implied covariance function, constructed
from the covariance matrix using k(x, x ′) = �T(x)C�(x ′). In gen-
eral, the implied covariance function will not be identical to the
desired covariance function—and as we shall see, this is the root of
many of the ‘challenges’ associated with discrete inversion.

3.1.1 Tikhonov regularization

In particular, it is instructive to consider the case where the de-
sired covariance function is given by k(x, x ′) = σ 2

1 δ(x − x ′). A
delta-function covariance implies that we do not expect any spa-
tial correlations within the recovered model, and it can be arbitrarily
rough—effectively, our prior is for a white-noise style function. The
equivalent covariance matrix is given by

Ci j = σ 2
1

∫∫
φi (x)δ(x − x ′)φ j (x

′) dx dx ′

= σ 2
1 �i j . (15)
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In any orthonormal basis, we will obtain C = σ 2
1 I—a choice often

known as Tikhonov regularization, or ‘ridge regression’. Thus, when
we adopt Tikhonov regularization, we are effectively attempting to
impose delta-function spatial covariances upon our model.

Two issues may be identified. First, one may reasonably question
whether a white-noise prior is a reasonable description for the sys-
tems we typically seek to image: few physical processes display such
extreme disorder. To give a concrete example, consider a seismic
tomography experiment, where we wish to estimate the shear-wave
speed at every point within the Earth’s interior. If, through some
artifice, we came to know the precise value of this quantity at one
particular location, how would this affect our state of knowledge
elsewhere? It is implausible to suggest that this information would
not influence our beliefs elsewhere: in the absence of strong evi-
dence to the contrary, we would undoubtedly assume that this value
was also indicative of wave speed in the surrounding region of
space. This implies that we expect the model to exhibit correlations
over some length-scale, although there may not be consensus over
exactly how this should be quantified. While it may appear superfi-
cially attractive to address this by imposing no correlation, it turns
out—as we shall see—that this creates more problems than it solves.

This arises from the second issue: it is readily-apparent that
even if a delta-function covariance is desired, it is impossible to
represent its infinite sharpness accurately using a finite set of basis
functions. To assess the effects of this, we can compute the implied
covariance function, by forming �T(x)�(x ′). This is illustrated
in Figs 1(a)–c) for a basis comprised of normalized Legendre
polynomials, complete to degree 50. As might be anticipated,
we see a Gibbs phenomenon-like ‘ringing’ effect, with weak
correlations and anti-correlations being imposed throughout the
domain. We also see that the value of k(x, x)—which corresponds
to the width of our prior distribution at the point x—is not constant,
and that the pattern of imposed correlations also varies with x.
None of these features are a manifestation of true prior information:
all emerge solely because we are seeking to impose correlations
that are incompatible with our basis.

3.1.2 Matérn regularization

As an alternative, Figs 1(d)–(f) shows similar plots for the case
where the desired covariance takes the form of a Matérn- 3

2 function,
as introduced in Part I,

k(x, x ′) = σ 2
1

(
1 +

√
3|x − x ′|

σ2

)
exp

(
−

√
3|x − x ′|

σ2

)
. (16)

We choose σ 1 = 1, and specify a characteristic length-scale of
correlation σ 2 = 0.1. Expanded in the discrete basis of Legendre
polynomials, this results in a covariance matrix with off-diagonal
structure (Fig. 1d), with the implied covariance function almost
exactly reproducing that which is desired (Figs 1e and f).

This example is intended to illustrate two points. First, we see that
the correlation structure actually imposed upon a discrete inversion
may differ significantly from that which we set out to impose: one
must consider whether the desired correlation function can be accu-
rately represented using the chosen set of basis functions. Notwith-
standing this, we also see that it is possible to impose a localized
correlation structure even in cases where the model is constructed
using basis functions that have global support. This is important: for
many geoscience applications, global basis functions such as spher-
ical harmonics are mathematically and computationally convenient.
However, it is usually the case that our observational constraints are

of a fundamentally local character: learning that seismic wave speed
is (say) higher than average beneath Australia should not alter our
knowledge about seismic wave speed beneath Europe. A common
difficulty encountered when performing inversion using global ba-
sis functions is that spurious model features get introduced into
regions with poor data coverage, as they allow improved data fit
elsewhere. Our results indicate that this effect can be suppressed by
an appropriate choice of correlation function. Of course, the choice
must also be guided by the detailed requirements of a particular
application, and we do not claim that the Matérn family is neces-
sarily superior to any other possible correlation function. The key
issue is one of representability: can the chosen covariance function
be expressed accurately within the model basis? The fact that the
Matérn functions are generally smooth, and have finite support, are
helpful here—but many other classes of function can be found that
share these properties.

Inevitably, every method comes with drawbacks. The major bar-
rier to building covariance matrices from correlation functions is
that, in general, the elements of C must be evaluated by numer-
ical integration. This may amount to a significant computational
cost. Moreover, if we wish to exploit the model-space formulation
of least-squares, we must invert the resulting covariance matrix—
again, an expensive task in high-dimensional settings. However, we
suspect that there may be routes around these challenges: given the
relatively limited range of basis functions commonly used in prac-
tice, it may prove feasible to develop approximations or heuristics
that allow inverse covariance matrices to be constructed directly
for a given style of desired covariance function. For example, one
might envisage a computational library that constructs the Matérn-
derived C−1

m for an arbitrary length-scale σ 2, by interpolation from
a small set of pre-computed inverse matrices—much as numeri-
cal integration libraries typically use pre-computed sets of quadra-
ture weights. Clearly, this is an area where further investigation is
necessary.

If we are to impose a finite length-scale of correlation upon our
models, how should this be chosen? One route is to treat this as
a regularization hyperparameter within the framework set out in
Valentine & Sambridge (2018), and seek the scale-length that is
most compatible with the observational data. This procedure can
be framed probabilistically, making it possible to integrate over all
possible correlation lengths. However, without an efficient method
for obtaining the inverse covariance matrix directly, this is likely to
be prohibitively expensive for all but the simplest problems. Never-
theless, it may often be possible to choose a reasonable value based
on physical grounds. For example, in a tomography experiment, it
may be reasonable to impose a length-scale based on the frequency
content of the seismic data set: it is evident that one cannot use-
fully constrain structural features that are small compared to the
wavelength of seismic waveforms used. It is also worth noting that
choices regarding length-scale may be usefully related to those re-
garding the dimension of the basis—for any given basis set, there
will be a length-scale below which implied and desired covariance
functions begin to diverge. We suggest this may be a reasonable
choice to impose in the absence of any alternative rationale. Con-
versely, if a certain length-scale is chosen a priori, this can be used to
determine the dimension of basis to use: for example, the vanishing
diagonal elements seen in Fig. 1(d) indicate that the highest-degree
Legendre polynomials are probably unnecessary in the inversions
presented. We highlight that any ill-conditioning in the covariance
matrix (preventing its inversion) can be readily addressed by iden-
tifying and discarding ‘unnecessary’ components within the basis.
In principle, more complex correlation functions characterized by
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Figure 1. Simple covariance matrices imply complex covariance functions. Choosing the prior covariance matrix, C, to be an identity matrix (a), and adopting a
finite basis comprised of normalized Legendre polynomials complete to degree 50, is equivalent to the spatial covariance function k(x, x

′
) shown in (b). This has

a complex structure; two slices through this function (dotted lines) are illustrated in (c). Notable (and undesirable) features include a Gibbs phenomenon-like
ringing of variable wavelength, and variation in peak amplitude. As an alternative, (d-f) show corresponding plots for a covariance matrix constructed based
on a Matérn- 3

2 function (d). Using this within an inversion imposes a simple spatial covariance function (e–f) upon the recovered model, without any of the
undesirable features.

multiple or even spatially-variable length-scales may be used, but
these lie beyond the scope of this paper.

3.1.3 A simple example

To illustrate the practical benefits associated with adopting non-
delta-like covariance functions, we perform a simple inversion ex-
periment. To begin with, we draw samples from the function

f (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 −1 ≤ x <
1

2

cos(x)
1

2
≤ x < 0

1 + x − x2 0 ≤ x ≤ 1

(17)

at 20 randomly distributed points xi in the ranges −0.7 ≤ x ≤ 0.1
and 0.5 ≤ x ≤ 1 (see Fig. 2a). To each sample, we add Gaussian
random noise, using a zero-mean distribution with standard devia-
tion σ = 0.1. We then attempt to recover the underlying function by
performing a least-squares inversion (following Tarantola & Valette
1982) of this data set, using a basis comprised (again) of normalized
Legendre polynomials to degree-50. First, we regularize this using
Tikhonov regularization, C = σ 2I, choosing σ using the approach
set out in Valentine & Sambridge (2018). Results are shown in
Fig. 2(b), and display reasonable performance in areas where there
is a high density of samples, but also considerable oscillation in
areas where there is little data: it is readily apparent that the results
are contaminated by the ‘ringing’ effects identified in Figs 1(b) and
(c). We then perform a second inversion, identical to the first except
for the regularization: we add a term to the inverse prior covariance
matrix to penalize steep gradients in the recovered model, with rel-
ative weight determined based on Valentine & Sambridge (2018).

Results for this are shown in Fig. 2(c), and while they remain im-
perfect, especially—unsurprisingly—in poorly sampled areas, the
recovered function contains much less spurious structure, and over-
all performance appears superior. Broadly similar results are seen
in a third inversion, which is regularized using the Matérn-derived
regularization operator shown in Figs 1(d)–(f).

In these three experiments, we are effectively performing regres-
sion: our data amounts to direct observations of the target function.
This is not the usual scenario in geophysical inverse problems, where
indirect measurements are more common. To better-represent this,
we therefore construct a second data set, consisting of the aver-
age values of f(x) between each pair that can be constructed from
the sampling points, xi. In other words, we suppose we have 190
‘measurements’,

dk = 1

x (k)
j − x (k)

i

∫ x
(k)
j

x
(k)
i

f (x) dx , (18)

where we assume xi < xj. In the notation of eq. (1), this corresponds
to a weighting function

wk(x) = 1

x (k)
j − x (k)

i

H
(

x − x (k)
i

)
H

(
x (k)

j − x
)

, (19)

where H(x) is a Heaviside step function; to illustrate the density
of information about f(x) provided by this data set, Fig. 2(e) shows∑

kwk(x). Again, we add Gaussian random noise to this data, and
perform one inversion using each style of regularization (with the
weight of the regularization term determined following Valentine
& Sambridge (2018)). Results may be seen in Figs 2(f)–(h), and
again—at least, from a visual perspective—the gradient-based and
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Figure 2. Localized structure with global basis functions. We generate a set of noisy samples from a known function (a), and fit a model expressed in Legendre
polynomials complete to degree-51 to these. When Tikhonov regularization is used (b), the model performs poorly in regions of limited data coverage; compare
Figs 1(a)–(c). In (c) we add an additional constraint to keep the first derivative of the recovered function small, while in (d) we use a Matérn-derived covariance
as in Figs 1(d)–(f). As a second experiment, we compute the average value of f(x) between every pair of sample-points from (a); the resulting density of
information about f is shown in (e). Adding noise to this data set of indirect measurements, we again perform inversion using Tikhonov (f), Tikhonov with first
derivative damping (g) and the Matérn-derived (h) regularization matrices. Tikhonov regularization clearly introduces many artefacts, which can be readily
related to the implied covariance function depicted in Fig. 1(b), whereas the Matérn-derived regularization gives an excellent reproduction of the original
function. Requiring the first derivative to be small yields results that are broadly similar to the Matérn case, but with slightly stronger artefacts: see Fig. 3 for
the equivalent correlation functions.

Matérn-derived approaches give similar results, vastly outperform-
ing Tikhonov regularization, with a much-reduced incidence of arte-
facts in the recovered model.

To better-understand these similarities, Fig. 3 shows the spatial
covariance function associated with the gradient-based regulariza-
tion operator. We see that this has a general form that is close to that
of the Matérn covariance function, with good localization of infor-
mation; however, there remains some residual ‘ringing’ of the kind
encountered in the Tikhonov case. By requiring that the gradient of
the recovered function be ‘small’, we are implicitly stipulating that
the function cannot change too dramatically from one location to the
next—in other words, that the function values must display corre-
lations over at least some length scale. The notion that an inversion
should result in a ‘smooth’ solution can therefore be approached
from either perspective. Whether one viewpoint is preferable to the
other will be application-dependent, but we observe that in many
cases there is little objective justification for a decision to penal-
ize certain orders of derivative and not others. In the typical case
where prior knowledge is relatively loosely defined, we suggest that

Figure 3. Spatial correlation functions corresponding to a Tikhonov regular-
ization operator incorporating first-derivative constraints, as used in Figs 2(c)
and (g).
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introducing regularization by reference to a desired spatial corre-
lation function and correlation length-scale may be an attractive
philosophy. It may also ease the process of ensuring comparabil-
ity between differently parametrized inversions. Regardless of the
viewpoint used to define the regularization operator, we believe that
knowledge of the implied spatial correlation function is of great
assistance in understanding how regularization choices are likely to
be impacting results.

3.2 Spectral Leakage

Trampert & Snieder (1996) consider the concept of spectral leakage
in discrete inverse problems, adopting the probabilistic least-squares
formulation of Tarantola & Valette (1982) and a Tikhonov-style
covariance matrix (C = σ 2

1 I). Working with spherical harmonic ba-
sis functions, they compute synthetic data for a model containing
structure at degree L. They then invert this synthetic data, using a
parametrization that only allows structure up to degree Lm < L, and
find significant errors in the recovered model. This is due to spectral
leakage—an effect similar to aliasing, whereby the unrepresentable
structure between degrees Lm and L gets mapped into results. Given
that real physical systems, such as the Earth, will almost inevitably
contain features at a finer scale than any basis used during inversion,
this is problematic. Another manifestation of the same fundamental
problem occurs if one compares two inversions, one obtained using
a basis complete to L1, and a second using basis functions complete
to L2 > L1: while one might naı̈vely expect the model coefficients
to agree below L1, this is often not the case.

From the perspective of this paper, these issues all stem from the
fact that a delta-like desired covariance function is unrepresentable
in the finite basis. As we have seen, the choice C = σ 2

1 I ends up
imposing relatively strong correlations upon the recovered model,
characterized by the shortest length-scale present in the basis set. If
a different basis is used (e.g. by increasing the maximum spherical
harmonic degree), the continued choice C = σ 2

1 I will result in an
implied covariance function with different properties, and thus the
recovered models will also differ.

To illustrate this, Fig. 4 shows two implied spatial covariance
functions, both corresponding to the choice Cm = I, but constructed
using different basis sets: one with spherical harmonics complete
to degree L = 8, and the other with spherical harmonics complete
to degree L = 16. The difference in spatial form can be readily
appreciated; in particular, the dominant wavelength associated with
periodic correlations changes as the basis set is expanded. Thus,
the manner in which the inversion ‘fills in gaps’ between data will
also change, despite the practitioner not (apparently) having al-
tered their approach to regularization. Coupled with an irregular
data distribution, and a non-trivial data-model relationship, it is
evident that inversion results obtained in the two cases may differ
considerably.

The easiest route to avoiding significant spectral leakage is there-
fore to ensure that the desired spatial covariance function is rep-
resentable within the chosen set of basis functions—or, equiva-
lently, ensuring that the implied spatial covariance function does not
change dramatically as the dimension of the basis set is increased.
For most ‘nice’ functions, this is likely to simply be a matter of
ensuring that the minimum length-scales within covariance and ba-
sis are consistent. Any part of the desired covariance function that
lies outside the basis will manifest itself through non-zero matrices
P and Q, and (at least in principle) these can be used to obtain a
quantitative understanding of the resulting spectral leakage.

We note that Trampert & Snieder (1996) derive a ‘spectral leak-
age correction’, designed to ameliorate the problem. However, this
requires inversion in the data-space—and thus, comes at similar
computational cost to that of the GP framework set out in Part I.
In cases where spectral leakage is a concern, it is therefore also
feasible to use our continuous approach. Where expression relative
to a basis is nevertheless desirable (e.g. to estimate power spectra),
this can be achieved through the use of eq. (9). In doing so, one can
ensure that no discretization error has been introduced.

4 C O N C LU D I N G R E M A R K S

According to the ‘folk wisdom’ of inversion using the least-squares
algorithm, use of global basis functions (such as spherical harmon-
ics) risks models containing unconstrained artefacts in regions of
poor data coverage, while use of local basis functions (e.g. grid
cells) inevitably results in very ‘patchy’ models. One solution to
this problem is to adopt alternative inversion schemes, such as the
Backus–Gilbert approach adopted by Zaroli (2016); another strat-
egy involves the imposition of strong regularization and smoothing
constraints. The results of this paper indicate that the key require-
ment is to ensure that the implied correlation function associated
with the regularization is appropriately localized, so that informa-
tion obtained in one region of the model does not unduly influence
results elsewhere.

Four points deserve to be highlighted. First, from a theoretical
perspective, the results set out in Section 2 provide an attractive route
to deriving the results of Tarantola & Valette (1982). While discrete
basis functions tend to simplify computations, they often complicate
analysis, and the approximation implicit in discretization can often
be a source of difficulty. The connections developed in this paper
enable analysis in the continuous domain with discretization as a
final step. We suggest this may greatly simplify theoretical studies
in linearized inversion.

Secondly, any regularization scheme adopted in a least-squares
inversion can straightforwardly and cheaply be represented as an
implied covariance function. We suggest that plotting this function,
or transects through it, should become routine whenever results are
to be analysed or presented. It is far more readily understood than a
model covariance matrix, and one may straightforwardly appreciate
where regularization choices might be impacting results.

Thirdly, we encourage the community to move away from
Tikhonov regularization, particularly in conjunction with global
basis functions, and to instead explore the potential to construct
covariance matrices from a chosen desired covariance function. We
believe this enables a more principled approach to the incorpora-
tion of prior information, and we have demonstrated clear practical
benefits associated with the imposition of local correlations. For
this to be possible, certain practical hurdles must be overcome: in
particular, computing large-scale covariance matrices by numerical
integration of a covariance function is computationally expensive.
Whether or not this is a barrier to adoption is obviously situation-
dependent; however, it may prove possible to develop algorithms
that reduce such costs.

The final message we wish to convey is more general. The in-
spiration for this work came from the machine learning literature:
how could we understand and apply the theory of GPs in a geo-
physical context? Eventually, this developed into the probabilistic,
continuous inverse theory set out in Part I, and the links to Tarantola
& Valette (1982) emerged. The resulting insights offer an oppor-
tunity to transform our approach to regularization in least-squares
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Figure 4. Spectral leakage: a covariance-function perspective. Spatial covariance functions k(x, 0) corresponding to C = I, expanded within a spherical-
harmonic basis complete to (a) L = 8 and (b) L = 16. In (c) and (d), we show cross-sections through both 2-D functions. The difference in dominant spatial
wavelength can be clearly appreciated: in changing the basis set, we have implicitly changed our assumptions about the properties of the underlying function.

inversion—a technique that has been central to geophysical inves-
tigations for over half a century, and about which an immense body
of literature has been assembled. We do not believe this is a unique
case: there is much to be gained by attempting to join the dots
that connect geophysical inverse theory to the mathematical and
statistical results that underpin the broad field of data science.
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