
Earth Surf. Dynam., 4, 445–460, 2016
www.earth-surf-dynam.net/4/445/2016/
doi:10.5194/esurf-4-445-2016
© Author(s) 2016. CC Attribution 3.0 License.

An introduction to learning algorithms and potential
applications in geomorphometry and

Earth surface dynamics

Andrew Valentine1 and Lara Kalnins2

1Department of Earth Sciences, Universiteit Utrecht, Postbus 80.021, 3508TA Utrecht, the Netherlands
2Department of Earth Sciences, Science Labs, Durham University, Durham, DH1 3LE, UK

Correspondence to: Andrew Valentine (a.p.valentine@uu.nl)

Received: 31 January 2016 – Published in Earth Surf. Dynam. Discuss.: 2 February 2016
Revised: 28 April 2016 – Accepted: 19 May 2016 – Published: 30 May 2016

Abstract. “Learning algorithms” are a class of computational tool designed to infer information from a data set,
and then apply that information predictively. They are particularly well suited to complex pattern recognition, or
to situations where a mathematical relationship needs to be modelled but where the underlying processes are not
well understood, are too expensive to compute, or where signals are over-printed by other effects. If a representa-
tive set of examples of the relationship can be constructed, a learning algorithm can assimilate its behaviour, and
may then serve as an efficient, approximate computational implementation thereof. A wide range of applications
in geomorphometry and Earth surface dynamics may be envisaged, ranging from classification of landforms
through to prediction of erosion characteristics given input forces. Here, we provide a practical overview of the
various approaches that lie within this general framework, review existing uses in geomorphology and related
applications, and discuss some of the factors that determine whether a learning algorithm approach is suited to
any given problem.

1 Introduction

The human brain has a remarkable capability for identify-
ing patterns in complex, noisy data sets, and then applying
this knowledge to solve problems or negotiate new situations.
The research field of “learning algorithms” (or “machine
learning”) centres around attempts to replicate this ability via
computational means, and is a cornerstone of efforts to cre-
ate “artificial intelligence”. The fruits of this work may be
seen in many different spheres – learning algorithms feature
in everything from smartphones to financial trading. As we
shall discuss in this paper, they can also prove useful in scien-
tific research, providing a route to tackling problems that are
not readily solved by conventional approaches. We will focus
particularly on applications falling within geomorphometry
and Earth surface dynamics, although the fundamental con-
cepts are applicable throughout the geosciences, and beyond.

This paper does not attempt to be comprehensive. It is im-
possible to list every problem that could potentially be tack-

led using a learning algorithm, or to describe every technique
that might somehow be said to involve “learning”. Instead,
we aim to provide a broad overview of the possibilities and
limitations associated with these approaches. We also hope to
highlight some of the issues that ought to be considered when
deciding whether to approach a particular research question
by exploring the use of learning algorithms.

The artificial intelligence literature is vast, and can be con-
fusing. The field sits at the interface of computer science, en-
gineering, and statistics: each brings its own perspective, and
sometimes uses different language to describe essentially the
same concept. A good starting point is the book by Mackay
(2003), although this assumes a certain level of mathemati-
cal fluency; Bishop (2006) is drier and has a somewhat nar-
rower focus, but is otherwise aimed at a similar readership.
Unfortunately, the nature of the field is such that there are
few good-quality reviews targeted to the less mathematically
inclined, although one example can be found in Olden et al.
(2008). There is also a wealth of tutorials and other course

Published by Copernicus Publications on behalf of the European Geosciences Union.

446 A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms

material available online, varying in scope and quality. Fi-
nally, we draw readers’ attention to a recent review by Jor-
dan and Mitchell (2015), offering a broad survey of machine
learning and its potential applications.

Learning algorithms are computational tools, and a num-
ber of software libraries are available which provide users
with a relatively straightforward route to solving practi-
cal problems. Notable examples include pybrain and
scikit-learnfor Python (Schaul et al., 2010; Pedregosa
et al., 2011), and the commercially available “Statistics and
Machine Learning” and “Neural Network” toolboxes for
Matlab. Most major techniques are also available as packages
within the statistical programming language R. Nevertheless,
we encourage readers with appropriate interest and skills to
spend some time writing their own implementations for ba-
sic algorithms: our experience suggests that this is a power-
ful aid to understanding how methods behave, and provides
an appreciation for potential obstacles or pitfalls. In princi-
ple, this can be achieved using any mainstream programming
language, although it is likely to be easiest in a high-level
language with built-in linear algebra support (e.g. Matlab,
Python with NumPy). Efficient “production” applications are
likely to benefit from use of the feature-intensive and highly
optimised tools available within the specialist software li-
braries mentioned above.

This paper begins with a brief overview of the general
framework within which learning algorithms operate. We
then introduce three fundamental classes of problem that are
often encountered in geomorphological research, and which
seem particularly suited to machine learning solutions. Moti-
vated by this, we survey some of the major techniques within
the field, highlighting some existing applications in geomor-
phology and related fields. Finally, some of the practical con-
siderations that affect implementation of these techniques are
discussed, and we highlight some issues that should be noted
when considering exploring learning algorithms further.

1.1 Learning algorithms: a general overview

Fundamentally, a learning algorithm is a set of rules that are
designed to find and exploit patterns in a data set. This is a
familiar process when patterns are known (or assumed) to
take a certain form – consider fitting a straight line to a set
of data points, for example – but the power of most learn-
ing algorithm approaches lies in their ability to handle com-
plex, arbitrary structures in data. Traditionally, a distinction
is drawn between “supervised” learning algorithms – which
are aimed at training the system to recognise known patterns,
features, or classes of object – and “unsupervised” learning,
aimed finding patterns in the data that have not previously
been identified or that are not well defined. Supervised learn-
ing typically involves optimising some pre-defined measure
of the algorithm’s performance – perhaps minimising the dif-
ference between observed values of a quantity and those pre-
dicted by the algorithm – while in unsupervised learning, the

goal is usually for the system to reach a mathematically sta-
ble state.

At a basic level, most learning algorithms can be regarded
as “black boxes”: they take data in, and then output some
quantity based upon that data. The detail of the relationship
between inputs and outputs is governed by a number of ad-
justable parameters, and the “learning” process involves tun-
ing these to yield the desired performance. Thus, a learn-
ing algorithm typically operates in two modes: a learning
or “training” phase, where internal parameters are iteratively
updated based on some “training data”, and an “operational”
mode in which these parameters are held constant, and the
algorithm outputs results based on whatever it has learned.
Depending on the application, and the type of learning al-
gorithm, training may operate as “batch learning” – where
the entire data set is assimilated in a single operation – or as
“online learning”, where the algorithm is shown individual
data examples sequentially and updates its model parameters
each time. This may be particularly useful in situations where
data collection is ongoing, and it is therefore desirable to be
able to refine the operation of the system based on this new
information.

In the context of learning algorithms, a “data set” is gen-
erally said to consist of numerous “data vectors”. For our
purposes, each data vector within the data set will usually
correspond to the same set of physical observations made
at different places in space or time. Thus, a data set might
consist of numerous stream profiles, or different regions ex-
tracted from a lidar-derived digital elevation model (DEM).
It is possible to combine multiple, diverse physical observa-
tions into a single data vector: for example, it might be desir-
able to measure both the cross section and variations in flow
rate across streams, and regard both as part of the same data
vector. It is important to ensure that all data vectors consti-
tuting a given data set are obtained and processed in a similar
manner, so that any difference between examples can be at-
tributed solely to physical factors. In practice, pre-processing
and “standardising” data to enhance features that are likely to
prove “useful” for the desired task can also significantly im-
pact performance: we return to this in Sect. 4.1.

2 Some general classes of geomorphological
problem

Broadly speaking, we see three classes of problem where
learning algorithms can be particularly useful in geomor-
phology: classification and cataloguing; cluster analysis and
dimension reduction; and regression and interpolation. All
represent tasks that can be difficult to implement effectively
via conventional means, and which are fundamentally data-
driven. However, there can be considerable overlap between
all three, and many applications will not fit neatly into one
category.

Earth Surf. Dynam., 4, 445–460, 2016 www.earth-surf-dynam.net/4/445/2016/

A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms 447

2.1 Classification and cataloguing

Classification problems are commonplace in observational
science, and provide the canonical application for supervised
learning algorithms. In the simplest case, we have a large col-
lection of observations of the same type – perhaps cross sec-
tions across valleys – and we wish to assign each to one of a
small number of categories (for example, as being of glacial
or riverine form). In general, this kind of task is straightfor-
ward to an experienced human eye. However, it may be dif-
ficult to codify the precise factors that the human takes into
account, preventing their implementation as computer code:
simple rules break down in the face of the complexities inher-
ent to real data from the natural world. With a learning algo-
rithm approach, the user typically classifies a representative
set of examples by hand, so that each data vector is associated
with a “flag” denoting the desired classification. The learning
algorithm then assimilates information about the connection
between observations and classification, seeking to replicate
the user’s choices as closely as possible. Once this training
procedure has been completed, the system can be used oper-
ationally to classify new examples, in principle without the
need for further human involvement.

Beyond an obvious role as a labour-saving device, auto-
mated systems may enable users to explore how particular
factors affect classification. It is straightforward to alter as-
pects of data processing, or the labelling of training exam-
ples, and then re-run the classification across a large data
set. Another advantage lies in the repeatable nature of the
classification: observations for a new area, or obtained at a
later date, can be processed in exactly the same manner as
the original data set, even if personnel differ. It is also possi-
ble to use multiple data sets simultaneously when performing
the classification – for example, identification of certain to-
pographic features may be aided by utilising high-resolution
local imagery, plus lower-resolution data showing the sur-
rounding region, or land use classification may benefit from
using topography together with satellite imagery.

It is sometimes claimed that it is possible to somehow “in-
terrogate” the learning algorithm so as to discover its inter-
nal state and understand which aspects of the data are used to
make a particular classification. This information could offer
new insights into the physical processes underpinning a given
problem. For the simplest classifiers, this may be possible,
but in general we believe it ought to be approached with some
scepticism. Classification systems are complex, and subtle
interactions between their constituent parts can prove impor-
tant. Thus, simplistic analysis may prove misleading. A more
robust approach, where feasible, would involve classifying
synthetic (artificial) data and exploring how parameters con-
trolling the generation of this affect results (see also Hillier
et al., 2015). It may also be instructive to explore how perfor-
mance varies when different subsets of observables are used.

Conventionally, classification problems assume that all ex-
amples presented to the system can be assigned to one cate-

gory or another. A closely related problem, which we choose
to call “cataloguing”, involves searching a large data set
for examples of a particular feature – for example, locating
moraines or faults in regional-scale topographic data. This
introduces additional challenges: each occurrence of the fea-
ture should be detected only once, and areas of the data set
that do not contain the desired feature may nevertheless vary
considerably in their characteristics. As a result, catalogu-
ing problems may require an approach that differs from other
classification schemes.

Examples of classification problems in geomorphology
where machine learning techniques have been applied in-
clude classifying elements of urban environments (Miliaresis
and Kokkas, 2007), river channel morphologies (Beechie and
Imaki, 2014), and landslide susceptibility levels (e.g. Bren-
ning, 2005). An example of a cataloguing problem is given
in Valentine et al. (2013), aimed at identifying seamounts in
a range of tectonic settings.

2.2 Cluster analysis and dimension reduction

Classification problems arise when the user has prior knowl-
edge of the features they wish to identify within a given data
set. However, in many cases we may not fully understand
how a given process manifests itself in observable phenom-
ena. Cluster analysis and dimension reduction techniques
provide tools for “discovering” structure within data sets,
by identifying features that frequently occur, and by finding
ways to partition a data set into two or more parts, each with
a particular character. An accessible overview of the concep-
tual basis for cluster analysis, as well as a survey of available
approaches, can be found in Jain (2010).

In many applications, data vectors are overparameterised:
the representations used for observable phenomena have
more degrees of freedom than the underlying physical sys-
tem. For example, local topography might be represented as
a grid of terrain heights. If samples are taken every 10 m, then
11 samples span a distance of 100m, and a 100m ⇥ 100m
area is represented by 121 distinct measurements. A single
121-dimensional data vector is obtained by “unwrapping”
the grid according to some well-defined scheme – perhaps
by traversing lines of latitude. Nevertheless, the underlying
process of interest might be largely governed by a handful
of parameters. This implies that there is a high level of re-
dundancy within the data vector, and it could therefore be
transformed to a lower-dimensional state without significant
loss of information. This may be beneficial, either in its own
right or as an adjunct to other operations: low-dimensional
systems tend to be easier to handle computationally, and sim-
ilarities or differences between examples may be clearer after
transformation. Dimension reduction algorithms aim to find
the optimal low-dimension representation of a given data set.

One particularly important application of dimension re-
duction lies in visualisation. Where individual data vectors
are high-dimensional, it may be difficult to devise effec-

www.earth-surf-dynam.net/4/445/2016/ Earth Surf. Dynam., 4, 445–460, 2016

448 A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms

tive means of plotting them in (typically) two dimensions.
This makes it difficult to appreciate the structure of a data
set, and how different examples relate to one another. In
order to tackle this problem, learning algorithms may be
used to identify a two-dimensional representation of the data
set that somehow preserves the higher-dimensional relation-
ships between examples. This process involves identifying
correlations and similarities between individual data vec-
tors, and generally does not explicitly incorporate knowl-
edge of the underlying physical processes. Thus, the coordi-
nates of each example within the low-dimensional space may
not have any particular physical significance, but examples
that share common characteristics will yield closely spaced
points. Thus, it may be possible to identify visual patterns,
and hence discover relationships within the high-dimensional
data.

Geomorphological applications of cluster analysis include
identifying flow directions from glacial landscapes (Smith
et al., 2016), identifying different types of vegetation (Bel-
luco et al., 2006), or extracting common structural orienta-
tions from a laser scan of a landslide scarp (Dunning et al.,
2009). An example of dimension reduction comes again from
landslide susceptibility studies, this time aimed at identifying
the most influential observables within a suite of possibilities
(Baeza and Corominas, 2001).

2.3 Regression and interpolation

The third class of problem involves learning relationships be-
tween physical parameters, in order to make predictions or
to infer properties. Very often, it is known that one set of ob-
servable phenomena are closely related to a different set – but
the details of that relationship may be unknown, or it may be
too complex to model directly. However, if it is possible to
obtain sufficient observations where both sets of phenomena
have been measured, a learning algorithm can be used to rep-
resent the link, and predict one given the other – for example,
an algorithm might take measurements of soil properties and
local topography and then output information about expected
surface run-off rates. Alternatively, the same training data
could be used to construct a system that infers the soil pa-
rameters given topography and run-off measurements. This
may be useful when there are fewer measurements avail-
able for one of the physical parameters, perhaps because it is
harder or more expensive to measure: once trained on exam-
ples where this parameter has been measured, the algorithm
can be used to estimate its value in other locations based on
the more widely available parameters.

Questions of this sort may be framed deterministically –
so that the system provides a single prediction – or statisti-
cally, where the solution is presented as a probability distri-
bution describing the range of possible outcomes. The choice
of approach will depend upon the nature of the underlying
problem, and upon the desired use of the results. In general,
probabilistic approaches are desirable, since they provide a

more realistic characterisation of the system under consid-
eration – deterministic approaches can be misleading when
more than one solution is compatible with available data,
or where uncertainties are large. However, in some cases it
may be difficult to interpret and use information presented
as a probability distribution. For completeness, we observe
that most learning algorithms have their roots in statistical
theory, and even when used “deterministically”, the result is
formally defined within a statistical framework.

In geomorphology, a common application of machine
learning for regression and interpolation is to link widely
available remote sensing measurements with underlying pa-
rameters of interest that cannot be measured directly: for
example, sediment and chlorophyll content of water from
colour measurements (Krasnopolsky and Schiller, 2003) or
marine sediment properties from bathymetry and proximity
to the coast (Li et al., 2011; Martin et al., 2015).

3 Some popular techniques

The aforementioned problems can be tackled in almost any
number of ways: there is rarely a single “correct” approach
to applying learning algorithms to any given question. As
will become clear, once a general technique has been se-
lected, there remains a considerable array of choices to be
made regarding its precise implementation. Usually, there is
no clear reason to make one decision instead of another –
often, the literature describes some “rule of thumb”, but its
underlying rationale may not always be obvious. A certain
amount of trial and error is generally required to obtain op-
timal results with a learning algorithm. This should perhaps
be borne in mind when comparisons are drawn between dif-
ferent approaches: although many studies can be found in
the literature that conclude that one method outperforms an-
other for a given problem, it is unlikely that this has been
demonstrated to hold for all possible implementations of the
two methods. It is also worth noting that the relationship be-
tween performance and computational demands may differ
between algorithms: a method that gave inadequate perfor-
mance on a desktop computer a decade ago may neverthe-
less excel given the vastly increased resources of a modern,
high-performance machine.

In what follows, we outline a selection of common meth-
ods, with an emphasis on conveying general principles rather
than providing precise formal definitions. There is no partic-
ular rationale underpinning the methods we choose to include
here, beyond a desire to cover a spectrum of important ap-
proaches. Other authors would undoubtedly make a different
selection (for example, see Wu et al., 2008, although this has
a narrower scope than the present work). In an effort to pro-
mote readability, we order our discussion roughly according
to complexity, although this is not an objective assessment.
A brief summary of the methods discussed can be found in
Table 1.

Earth Surf. Dynam., 4, 445–460, 2016 www.earth-surf-dynam.net/4/445/2016/

A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms 449

Table 1. Summary of methods discussed in this paper. For each of the “popular techniques” discussed in Sect. 3, we indicate the classes of
problem for which they are generally used (as described in Sect. 2); whether the method generally operates as “supervised” learning (based on
optimising a pre-determined performance measure), or unsupervised (attempting to reach a stable state); and whether the method is typically
“deterministic”, so that it is guaranteed to yield identical results each time it is applied to a given data set. Note that Bayesian inference is
itself deterministic, but it is most often encountered in contexts where it is applied to randomly chosen observations. The indications given
here are not intended to be exhaustive: it may be possible to adapt each technique to suit the full range of applications.

Generally used for: Learning mode
Dimension

Method Classification Clustering reduction Regression Supervised Unsupervised Deterministic

Decision trees X X
K-means X X

PCA X X X
Neural networks X X X X X

SVMs X X
SOMs X X X

Bayesian inference X X X X X (X)

3.1 Decision trees and random forests

A decision tree is a system that takes a data vector, and
processes it via a sequence of if-then-else constructs
(“branch points”) until an output state can be determined (see
Fig. 1). This is clearly well suited to addressing simple classi-
fication problems, and to predicting the states of certain phys-
ical systems: essentially, the system resembles a flowchart. In
this context, “learning” involves choosing how the data set
should be partitioned at each branch.

Typically, each data vector contains a number of “ele-
ments” – distinct observations, perhaps made at different
points in space or time, or of different quantities relevant to
the phenomenon of interest. Each vector is also associated
with a particular “desired outcome” – the classification or
state that the tree should output when given that example. Ba-
sic decision tree generation algorithms aim to identify a test
that can be applied to any one element, which separates de-
sired outcomes as cleanly as possible (e.g. Fig. 1a, b). This is
typically quantified using a measure such as “information en-
tropy”, which assesses the degree to which a system behaves
predictably. Once the training data have been partitioned into
two sets, the algorithm can be applied recursively on each,
until a complete tree has been constructed. Commonly en-
countered tree generation schemes include ID3 (Quinlan,
1986) and its successor C4.5 (Quinlan, 1993).

Tree generation assumes that the data are perfect, and will
therefore continue adding branch points until all training data
can be classified as desired. When real-world data sets –
which invariably contain errors and “noise” – are used, this
tends to result in overly complex trees, with many branches.
This phenomenon is known as “overfitting”, and tends to re-
sult in a tree with poor generalisation performance: when
used to process previously unseen examples, the system does
not give the desired outcome as often as one might hope. It is
therefore usual to adopt some sort of “pruning” strategy, by

which certain branches are merged or removed. Essentially,
this entails prioritising simple trees over perfect performance
for training data; a variety of techniques exist, and the choice
will probably be application-specific.

Another approach to this issue, and to the fact that in many
problems the number of data elements vastly exceeds the
number of possible outcomes, lies in the use of “random
forests” (Breiman, 2001). By selecting data vectors from the
training set at random (with replacement), and discarding
some randomly chosen elements from these, we can con-
struct a number of new data sets. It is then straightforward
to build a decision tree for each of these. Typically, this re-
sults in trees that perform well for some – but not all – exam-
ples. However, if we use each tree to predict an outcome for a
given data vector, and then somehow compute the average of
these predictions, performance is usually significantly better
than can be achieved with any one tree. This strategy, where
a number of similar, randomised systems are constructed and
then used simultaneously, is sometimes referred to as an “en-
semble” method. Again, when treated in more detail, a vari-
ety of approaches are possible, and the intended application
may help dictate which should be used.

A recent example of an application of random forests to
Earth surface data can be found in Martin et al. (2015).
Here, the goal is to predict the porosity of sediments lying
on the ocean floor from a range of different data, includ-
ing measures such as water depth or distance from sediment-
producing features. Such observations are much easier to ob-
tain than direct measurement of the seafloor, which obviously
requires ocean-bottom sampling. Using training data from
locations where such samples have been collected, a random
forest is constructed that enables porosity predictions to be
made throughout the oceans. This concept could readily be
adapted to a variety of other situations where local physi-
cal properties must be estimated from remotely sensed data.
Further discussion of the use of random forests for interpola-

www.earth-surf-dynam.net/4/445/2016/ Earth Surf. Dynam., 4, 445–460, 2016

450 A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms

(a)

Seasonality > 0.4

Yes No

C1 G1

C2

B1 G2

B2 G3

(b)

Seasonality > 0.5

Yes No

C1

C2

B1 G2

B2 G3G1

Sample Veg. Season. Rough.
• cropland 1 0.5 0.9 0.1
• grazing 1 0.6 0.5 0.2
• built up 1 0.2 0.1 0.2
• grazing 2 0.4 0.4 0.7
• cropland 2 0.7 0.8 0.3
• built up 2 0.3 0.3 0.4
• grazing 3 0.5 0.3 0.6

(c)

Seasonality > 0.5

Yes No

C1

C2

Vegetation > 0.3

Yes No

G1 G2 G3 B1 B2

1

Figure 1. Evolution of a decision tree for land use data based on normalised parameters for vegetation index, seasonal colour variability,
and topographic roughness. (a) The algorithm tests a variety of conditions for the first branch point, looking for a condition such as (b) that
cleanly separates different classes. (c) A second branch point is added to differentiate between built-up and grazing land.

tion between samples can be found in, for example, Li et al.
(2011), who test a variety of techniques including random
forests and support vector machines in order to produce a re-
gional map of mud content in sediments based on discrete
sampling. Another example comes from Bhattacharya et al.
(2007), who construct models of sediment transport using a
variant of decision trees where each “leaf” is a linear regres-
sion function, rather than a single classification; the decision
tree is essentially used to choose which mathematical model
to apply in each particular combination of circumstances.

3.2 The k-means algorithm

By far the most well-known technique for cluster analysis,
k-means is usually said to have its origins in work eventually
published as Lloyd (1982), but disseminated earlier (thus, for
example, Hartigan and Wong, 1979, set out a specific imple-
mentation). The algorithm is designed to divide a set of N

data vectors, each consisting of M elements, into K clusters.
These clusters are defined so that the distance of each point
in the cluster from its centre is as small as possible.

The algorithm is readily understood, and is illustrated in
Fig. 2. We begin by generating K points, which represent
our initial guesses for the location of the centre of each clus-
ter – these may be chosen completely at random, or based
on various heuristics which attempt to identify a “sensible”
initial configuration. We then assign each element of our
training data to the cluster with the nearest centre (Fig. 2b).
Once this has been done, we recompute the position of the
central point by averaging the locations of all points in the
cluster (Fig. 2c). This process of assignment and averaging
is repeated (Fig. 2d) until a stable configuration is obtained

(Fig. 2e). The resulting clusters may then be inspected to as-
certain their similarities and differences, and new data can be
classified by computing its distance from each cluster centre.

In order to implement this, it is necessary to define what
the word “distance” means in the context of comparing any
two data vectors. There are a number of possible defini-
tions, but it is most common to use the “Euclidean” dis-
tance: the sum of the squared difference between each ele-
ment of the two vectors. Thus, if x is a vector with M ele-
ments (x1,x2, . . .,xM

) and y a second vector (y1,y2, . . .,yM

),
then the Euclidean distance between them is defined

d =
MX

i=1
(x

i

� y

i

)2
. (1)

This definition is a natural extension of our everyday under-
standing of the concept of “distance”. However, where data
vectors are comprised of more than one class of observation
– perhaps combining topographic heights with soil properties
– problems can arise if the measurements differ considerably
in typical scale. The Euclidean distance between two two-
element data vectors (1,10�9) and (1,10�5) is very small,
despite the second elements differing by 4 orders of magni-
tude, because both are negligible in comparison to the first
element. It may be necessary to rescale the various measure-
ments that make up a data vector to ensure that they have
a similar magnitude and dynamic range. Alternatively, and
equivalently, the definition of “distance” can be adapted to
assign different weights to various data types.

In its basic form, the k-means algorithm requires the user
to specify the number of clusters to be sought as a priori in-
formation. In many cases, this may not be known, and a range
of different solutions have been proposed – see, for example,

Earth Surf. Dynam., 4, 445–460, 2016 www.earth-surf-dynam.net/4/445/2016/

A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms 451

(a) (b) (c) (d) (e)

Figure 2. The k-means algorithm. (a) A data set contains points clustered around three distinct locations (colour-coded for ease of reference).
(b) We first guess locations for these centres at random (black squares) and assign each datum to the nearest cluster (shown divided by black
lines). (c) We then re-compute the location of each cluster centre by averaging all points within the cluster (old centres, grey squares; new
centres, black squares), and (d) update the cluster assignment of each point to reflect this. It may be necessary to repeat steps (c) and (d) for
several iterations until a stable partitioning of the data set is found (e).

Jain (2010). Fundamentally, these entail balancing increased
complexity (i.e., an increased number of clusters) against any
resulting reduction in the average distance between samples
and the cluster centre. In general, this reduction becomes in-
significant once we pass a certain number of clusters, and this
is taken to provide an appropriate description of the data.

Clustering algorithms such as k-means have seen use in
geomorphology as an aid to analysis or interpretation of a
variety of data sets. It is common to first apply some trans-
formation or pre-processing to raw data so as to improve
sensitivity to particular classes of feature. For example, Mil-
iaresis and Kokkas (2007) take lidar DEMs, apply various
filters designed to enhance the visibility of the built environ-
ment within the image, and then use k-means to distinguish
different areas of urban environment (such as differentiating
between vegetation, buildings, and roads/pavements). Simi-
larly, Belluco et al. (2006) use the technique to assist in map-
ping vegetation based on remotely sensed spectral imaging,
although they find that which method performs best depends
on the type of imaging and field data. On a much smaller
scale, Dunning et al. (2009) use k-means and other clus-
tering algorithms to extract discontinuity orientations from
laser-derived observations of landslide scarps, which help
constrain the mechanism behind the slope failure.

3.3 Principal component analysis

Often, the different observations comprising a given data
vector are correlated, and thus not fully independent: for
example, topographic heights at adjacent sites are likely to
be reasonably similar to one another, and an imprint of to-
pography will often be found in other data sets such as soil
thickness or temperature. For analysis purposes, it is often
desirable to identify the patterns common to multiple data
elements, and to transform observations into a form where
each parameter, or component, is uncorrelated from the oth-
ers. Principal component analysis (PCA) provides one of the
most common techniques for doing so, and has its roots in the
work of Pearson (1901). Essentially the same mathematical
operation arises in a variety of other contexts, and has ac-
quired a different name in each: for example, “singular value

−1

0

1

−1 0 1

Figure 3. Principal component analysis of a simple data set. Dom-
inant principal component shown in red; secondary principal com-
ponent shown in blue. Line lengths are proportional to the weight
attached to each component. It is apparent that the principal com-
ponents align with the directions in which the data set shows most
variance.

decomposition”, “eigenvector analysis”, and the concept of
“empirical orthogonal functions” are all closely related to
PCA.

Numerical algorithms for performing PCA are complex,
and there is usually little need for the end user to understand
their intricacies. In general terms, PCA involves finding the
“direction” in which the elements of a data set exhibit the
greatest variation, and then repeating this with the constraint
that each successive direction considered must be at right an-
gles (orthogonal) to those already found. Although easiest to
visualise in two or three dimensions (see Fig. 3), the principle
works in the same way for data vectors with more elements:
for a set of data vectors with M elements, it is possible to
construct up to M perpendicular directions.

Thus, the outcome of PCA is an set of orthogonal direc-
tions (referred to as principal components) ordered by their
importance in explaining a given data set: in a certain sense,
this can be regarded as a new set of co-ordinate axes against
which data examples may be measured. The principal com-

www.earth-surf-dynam.net/4/445/2016/ Earth Surf. Dynam., 4, 445–460, 2016

452 A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms

Original N=1 N=10 N=100 N=200 N=500

−6000

−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

E
le

va
tio

n
 (

m
)

Figure 4. Image reconstruction using principal components. PCA has been performed on a data set containing 1000 square “patches” of
bathymetric data, each representing an area of dimension 150 km ⇥150 km, centred upon a seamount (the “training set” used in Valentine
et al., 2013). Each patch is comprised of 64 ⇥ 64 samples – thus, each can be seen as a 4096-dimensional object. Three examples from this
set are shown here (one per row). In the left-most column we show the original bathymetry for each; then, we present reconstructions of
this bathymetry using only the N most significant principal components, for N = 1, 10, 100, 200, and 500. It is apparent that the large-scale
structures within this data set can be represented using only 100–200 dimensions, while around 500 dimensions are required to allow some
of the fine-scale structure to be represented, particularly in the third example. This still represents almost an order of magnitude reduction, in
comparison to the original, 4096-dimensional, data.

ponents may be regarded as a set of weighted averages of
different combinations of the original parameters, chosen to
best describe the data. Often, much of the structure of a
data set can be expressed using only the first few principal
components, and PCA can therefore be used as a form of
dimensionality-reduction (see Fig. 4). In a similar vein, it can
form a useful precursor to other forms of analysis, such as
clustering, by virtue of its role in unpicking the various sig-
nals contributing to a data set: often, each component will ex-
hibit sensitivity to particular physical parameters. However,
particularly where the original data are composed of a vari-
ety of different physical data types, the results of PCA may
not be straightforward to interpret: each principal component
may be influenced by a number of disparate measurements.

One example of this can be found in Cuadrado and Per-
illo (1997), where PCA is performed on a data set consist-
ing of bathymetric measurements for a given region repeated
over several months. The first principal component is then
found to describe the mean bathymetry of the period, while
the second provides information about the general trend of
change in bathymetry over time, highlighting areas of de-
position and erosion. Another typical application occurs in
Baeza and Corominas (2001), where PCA is used to iden-
tify the observable parameters that best serve as predictors
of landslide hazard. A more recent example is Tamene et al.
(2006), who use PCA to identify which observable parame-
ters best explain variability in sediment yield between differ-
ent river catchments in Ethiopia. This example also shows

how a single principal component may be a combination
of observables: their first component, which explains about
50 % of the variability, is dominated by a combination of to-
pographic variables, such as height difference, elongation ra-
tio, and catchment area. The second component, which ex-
plains approximately 20 % of the variability, is dominated by
variables associated with lithology and land use/vegetation
cover.

3.4 Neural networks

Perhaps the most varied and versatile class of algorithm dis-
cussed in this paper is the neural network. As the name sug-
gests, these were originally developed as a model for the
workings of the brain, and they can be applied to tackling
a wide range of problems. It has been shown (e.g. Hornik,
1991) that neural networks can, in principle, be used to rep-
resent arbitrarily complex mathematical functions, and their
use is widespread in modern technology – with applica-
tions including tasks such as voice recognition or automatic
language translation. They may be used to tackle problems
falling in all three of the classes discussed in Sect. 2. A com-
prehensive introduction to neural networks may be found in
Bishop (1995); the aforementioned book by Mackay (2003)
also discusses them at some length. Some readers may also
be interested in a review by Mas and Flores (2008), targeted
at the remote sensing community.

Earth Surf. Dynam., 4, 445–460, 2016 www.earth-surf-dynam.net/4/445/2016/

A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms 453

x

xN

x4

x3

x2

x1

w

(1)
1

w

(1)
2

w

(1)
3

w

(1)
K

w

(2)
1

w

(2)
2

w

(2)
3

w

(2)
L

w

(3)
1

w

(3)
2

w

(3)
M

y1

y2

yM

y

Figure 5. Schematic of a simple neural network (a “multi-layer perceptron”). The network takes an N -dimensional vector, x, on the left
side and transforms it into an M-dimensional vector y on the right side. Each grey box represents a “neuron”, and is a simple mathematical
operation which takes many inputs (lines coming in from the left) and returns a single output value which is sent to every neuron in the next
“layer” (lines coming out from the right). The neuron’s behaviour is governed by a unique set of “weights” (w): one common mathematical
relation has a neuron in a layer with K inputs return y = tanh(w0 + P

K

i=1w

i

x

i

), where the single output element y will become part of the
inputs for the next layer.

A neural network is constructed from a large number of in-
terconnected “neurons”. Each neuron is a processing unit that
takes a number of numerical inputs, computes a weighted
sum of these, and then uses this result to compute an out-
put value. The behaviour of the neuron can therefore be con-
trolled by altering the weights used in this computation. By
connecting together many neurons, with the outputs from
some being used as inputs to others, a complex system – or
network – can be created, as in Fig. 5. The weights associated
with each neuron are unique, so that the behaviour of the net-
work as a whole is controlled by a large number of adjustable
parameters. Typically, these are initially randomised; then, a
“training” procedure is used to iteratively update the weights
until the network exhibits the desired behaviour for a given
training set.

Such a brief description glosses over the richness of ap-
proaches within “neural networks”: choices must be made
regarding how individual neurons behave, how they are con-
nected together (the “network architecture”), and how the
training algorithm operates. These are generally somewhat
application-dependent, and may dictate how effectively the
network performs. The simplest form of neural network,
sometimes called a “multi-layer perceptron” (MLP), consists
of neurons arranged in two or three “layers”, with the out-
puts from neurons in one layer being used as the inputs for
the next layer (see Fig. 5). Traditionally, these are trained by
“back-propagation” (Rumelhart et al., 1986), which involves
calculating how network outputs are influenced by each in-
dividual weight. The canonical use for such a network is as
a classifier (e.g. Lippmann, 1989; Bischof et al., 1992), al-
though they are exceptionally versatile: for example, Ermini
et al. (2005) demonstrate that MLPs can be used for landslide
susceptibility prediction. They may also be used to model a
wide variety of physical relationships between observables,

for example, in interpolation problems such as estimating
difficult-to-measure surface properties from satellite obser-
vations (e.g. Krasnopolsky and Schiller, 2003), and to detect
unusual or unexpected features within data sets (e.g. Markou
and Singh, 2003).

In recent years, attention has increasingly focussed on
“deep learning”, where many more layers of neurons are
used. This has proven effective as a means to “discover”
structure in large, complex data sets and represent these in
a low-dimensional form (Hinton and Salakhutdinov, 2006).
Typically, these require specialised training algorithms, since
the number of free parameters in the network is exceptionally
large. Such systems are particularly useful for applications in
cluster analysis and dimension reduction, and these proper-
ties can be exploited to enable cataloguing of geomorpholog-
ical features in large data sets, as in Valentine et al. (2013).

3.5 Support vector machines

The modern concept of the support vector machine (SVM)
stems from the work of Cortes and Vapnik (1995), although
this builds on earlier ideas. The approach is targeted towards
classification problems, framed in terms of finding, and then
utilising, “decision boundaries” that separate one class from
another. In the simplest case, linear decision boundaries can
be found – that is, any two classes can always be separated
by a straight line when two-dimensional slices through the
data set are plotted on a graph. The SVM method provides
an algorithm for constructing linear decision boundaries that
maximise the “margin” between boundary and adjacent data
points, as shown in Fig. 6.

However, in most realistic cases, the data set cannot be
cleanly categorised using linear boundaries: all possible lin-
ear decision boundaries will misclassify some data points. To

www.earth-surf-dynam.net/4/445/2016/ Earth Surf. Dynam., 4, 445–460, 2016

454 A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms

Figure 6. Segmenting data sets with linear decision boundaries. In
the original one dimension (top), it is not possible to separate red
squares from blue circles. However, by mapping this data set into
an artificial second dimension, it becomes possible to draw a linear
“decision boundary” that distinguishes the two classes. The support
vector machine provides a technique for achieving this in such a
way that the “margin” between the boundary and the nearest data
points is maximised (as shown by the dotted lines).

handle this scenario, the SVM approach uses a mathemat-
ical trick to create nonlinear decision boundaries in a way
that is computationally tractable. Data are first mapped into a
higher-dimensional “feature space” (the opposite of dimen-
sionality reduction); in this space, the data can then be sepa-
rated using linear boundaries (see Fig. 6). This mapping, or
transformation, may be nonlinear, so that lines in the feature
space may correspond to curves in the original data space.
Various extensions to this approach exist that allow for a less-
than-perfect division of the data set, to reflect the presence of
classification errors or observational noise. Once boundaries
have been determined, the SVM may then be used for clas-
sification of new examples. SVMs have some similarities in
structure to simple neural networks, although the “training”
or optimisation procedure is quite distinct.

Again, landslide susceptibility assessment offers one as-
pect of geomorphology where SVMs have found signifi-
cant application (e.g. Brenning, 2005; Yao et al., 2008; Mar-
janović et al., 2011; Peng et al., 2014). They have also been
used to differentiate between fluvial and glacial river valleys
(Matías et al., 2009). Another similar use can be found in
Beechie and Imaki (2014): there, the authors use an SVM to
classify river channel morphologies based on geospatial data
including DEMs, precipitation, and geology. This can then
be used in river conservation and restoration to infer the nat-
ural patterns that existed in areas that have been subject to
extensive human intervention.

3.6 Self-organising maps

The concept of the self-organising map (SOM) stems from
the work of Kohonen (1990), and it can be viewed as a par-

ticular class of neural network. The SOM implements a form
of dimensionality reduction, and is generally used to help
identify clusters and categories within a data set. The ba-
sic premise is to take a (usually) two-dimensional grid and,
through training, create a mapping between that 2-D space
and a higher-dimensional data set (see Fig. 7). The 2-D rep-
resentation can then be used to help visualise the structure of
the data. The SOM is also typically designed to be signifi-
cantly smaller than the training set, spanning the same data
space with fewer points, and is thus easier to analyse.

To create an SOM, we start with a map consisting of a
number of “nodes”, often arranged as a regular grid, so that it
is possible to define a “distance” between any two nodes, and
hence identify the set of nodes that lie within a certain radius
of a given node, known as its “neighbourhood”. Each node is
associated with a random “codebook vector” with the same
dimensionality as the data (Fig. 7a). During training, we iter-
atively select a data example at random from the training set,
identify the node with the closest-matching codebook vec-
tor, and then adjust this vector, and those of neighbouring
nodes, to better match the training example (Fig. 7b). Given
sufficient training, the codebook vectors come to mirror the
distribution of data in the training set (Fig. 7c). Typically,
both the radius used to define the “neighbourhood” of a given
node and the extent to which codebook vectors are allowed to
change are reduced as training proceeds in order to promote
fine tuning of performance.

Once the SOM is trained, various approaches exist to en-
able visualisation of the codebook vectors, with the goal of
highlighting any underlying structure within the data set. One
common approach is to try to identify clusters in the data
set by examining the distances between the codebook vec-
tors for neighbouring nodes, often by plotting the SOM grid
coloured according to these distances (sometimes described
as depicting the “U-matrix”). Alternatively, a method can be
used to distort the grid in such a way that when plotted in
2-D, the distance between nodes is proportional to the dis-
tance between their codebook vectors; one common tech-
nique for this is “Sammon’s mapping” (Sammon, 1969). An-
other visualisation approach, sometimes called “component
plane analysis”, looks for correlations between input param-
eters, e.g. between rainfall and elevation or slope orientation
and landslide risk. Here, the SOM grid is coloured accord-
ing to the values of particular elements of the codebook vec-
tors, with each element corresponding to an input parameter.
Correlated parameters can then be identified by their similar
colour patterns.

Potential applications in geomorphology are numerous.
Marsh and Brown (2009) use an SOM-based method to
analyse and classify bathymetry and backscatter data, al-
lowing near-real-time identification of regions with partic-
ular seafloor characteristics, e.g. for benthic habitat map-
ping. Similarly, Ehsani and Quiel (2008) demonstrate that
SOMs can be used to classify topographic features, iden-
tifying characteristic morphologies contained within DEMs

Earth Surf. Dynam., 4, 445–460, 2016 www.earth-surf-dynam.net/4/445/2016/

A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms 455

(a) (b) (c) (d) (e)

Figure 7. The self-organising map (SOM). A data set consists of numerous data points (blue), and is to be represented by a one-dimensional
SOM (red). The SOM contains of a number of nodes, with a well-defined spatial relationship (here, depicted by lines connecting points).
Initially, all SOM nodes are associated with random locations in data space (a). During training (b–d) a datum is selected at random (high-
lighted in green). The closest SOM node is identified, and this and its nearest neighbours are adjusted so as to be closer to the chosen point
(arrows), with the scale of adjustment proportional to the separation. After many iterations of this procedure, the distribution of SOM nodes
mirrors that of the data set (e). For ease of illustration, this figure depicts a two-dimensional data set and a one-dimensional SOM; in practice,
the data set will usually have much higher dimensionality, and the SOM is usually organised as a two-dimensional grid.

such as channels, ridge crests, and valley floors. In a third
example, Friedel (2011) uses SOMs to assess post-fire haz-
ards in recently burned landscapes. Both PCA and k-means
clustering are then used to divide the 540 areas studied into 8
distinct groups, which the author suggests could be used for
focussing future field research and development of empiri-
cal models. As illustrated by these examples, one of the key
strengths of the SOM method is that learning is unsupervised,
and does not rely on the user having any prior knowledge of
the “important” structures contained within the data set.

3.7 Bayesian inference

To conclude this section, we mention the concept of Bayesian
inference. This is a much broader topic than any of the meth-
ods discussed so far; indeed, in many cases these methods are
themselves formally derived from Bayesian concepts. Bayes’
theorem (Bayes, 1763) underpins a significant fraction of
modern statistical techniques, and explains how new obser-
vations can be used to refine our knowledge of a system. It
tells us that the probability that the system is in a certain state,
given that we have made a particular observation (“obs.”),
P (state |obs.), can be expressed in the form

P (state |obs.) = P (obs. | state)P (state)
P (obs.)

. (2)

Here, P (state) represents our prior knowledge – that is, our
assessment of the probability that the system is in the given
state without making any measurements – while P (obs.) rep-
resents the probability with which we expect to obtain the
exact measurements we did, in the absence of any knowl-
edge about the state of the system. Finally, P (obs. | state)
expresses the probability that we would get those measure-
ments for a system known to be in the relevant state.

In many cases, it is possible to estimate or compute the
various probabilities required to implement Bayes’ theorem,
and thus it is possible to make probabilistic assessments. This
is often useful: for example, hazard assessment is generally

better framed in terms of the chance, or risk, of an event,
rather than attempting to provide deterministic predictions.
An extensive discussion of Bayesian analysis can be found in
Mackay (2003). Sivia (1996) is another useful reference, and
a paper by Griffiths (1982) provides some geomorphologi-
cal context. A wide range of computational techniques have
been developed to enable Bayesian calculations in various
settings, for which a review by Sambridge and Mosegaard
(2002) may be a good starting point.

As a simple example, suppose we are interested in classi-
fying land use from satellite imagery. Grassland will appear
as a green pixel 80 % of the time, although it may also be
brown: thus, P (green|grass) = 0.8. On the other hand, desert
environments appear as brown in 99 % of cases. A partic-
ular region is known to be mainly desert, with only 10 %
grassland – so an image of the area will consist of 8.9 %
green pixels (= ((0.01 ⇥ 0.9) + (0.8 ⇥ 0.1))). If we look at
one specific pixel, and observe that it is green, Bayes’ theo-
rem tells us there is a 90 % chance that the location is grass-
land: P (grass|green) = P (green|grass)P (grass)/P (green) =
0.8⇥0.1/0.089 ⇡ 0.899. On the other hand, if a pixel is seen
to be brown, we can classify it as desert with 98 % certainty.
This illustrates a property that emerges from the Bayesian
formalism: unusual observations convey more information
than routine ones. Before we obtained any satellite imagery,
we could have guessed with 90 % accuracy that a particular
location in the region was desert; observing a brown pixel
leads to only a relatively modest increase in the certainty of
this determination. However, if we were to observe a green
pixel, the chance that the location is a desert drops markedly,
to only 10 %.

Most examples in geomorphology again come from land-
slide susceptibility: Lee et al. (2002) and Das et al. (2012) use
Bayesian techniques to assess landslide susceptibility in Ko-
rea and the Himalayas, respectively. In a similar application,
Mondini et al. (2013) map and classify landslides in southern
Taiwan using a Bayesian framework. Examples from other
areas of geomorphology include Gutierrez et al. (2011), who

www.earth-surf-dynam.net/4/445/2016/ Earth Surf. Dynam., 4, 445–460, 2016

456 A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms

use a Bayesian network to predict shoreline evolution in re-
sponse to sea-level change, and Schmelter et al. (2011), who
use Bayesian techniques for sediment transport modelling.

4 Practical considerations

Each of the techniques discussed in the previous section –
and the wide variety of alternatives not mentioned here – has
its strengths and weaknesses, and a number of practical is-
sues may need to be considered when implementing a solu-
tion to a particular problem. Here, we discuss some topics
that may be relevant across a range of different approaches,
and which may affect the viability of a learning algorithm
solution in any case.

4.1 Constructing a training set

Unsurprisingly, the training data used when implementing a
learning algorithm can have a major impact upon results: ev-
erything the system “knows” is derived entirely from these
examples. Any biases or deficiencies within the training data
will therefore manifest themselves in the performance of the
trained system. This is not, in itself, necessarily problem-
atic – indeed, the landform cataloguing system introduced
by Valentine et al. (2013) relies upon this property – but it
must be borne in mind when tools are used and results inter-
preted. If training data are low-quality or contain artefacts,
glitches and other observational “noise”, results will suffer.
In general, time invested in properly selecting and process-
ing data sets will be well spent. However, it is also important
that training data remain representative of the data that will
be used during operation.

One particular issue that can arise stems from the fact that
the learning algorithm lacks the trained researcher’s sense
of context: it has no preconception that certain structures in
the data are more or less significant than others. For exam-
ple, suppose a system is developed to classify valley profiles
as being formed by either a river or a glacier. The training
data for this system would consist of a sequence of hand-
classified valley profiles, each expressed as a vector of topo-
graphic measurements. If, for the sake of example, all glacial
examples happen to be drawn from low-elevation regions,
and all riverine examples from high-elevation regions, it is
likely that the system would learn to treat elevation as an im-
portant factor during classification.

A second potential pitfall arises from the statistical basis
underpinning most learning algorithms. Typically, the extent
to which a particular feature or facet of the data set will be
“learnt” depends on its prevalence within the training exam-
ples as a whole. This can make it difficult for a system to
recognise and use information that occurs infrequently in the
training data, since it gets “drowned out” by more common
features. Again, considering the problem of valley classifica-
tion, if 99 % of training examples are glacial, the system is
likely to learn to disregard its inputs and simply classify ev-

erything as glacial, since this results in a very low error rate;
for best results, both types should occur in roughly equal pro-
portions within the training set. As before, this should be re-
garded as a natural property of the learning process, rather
than as being inherently problematic; indeed, it can be ex-
ploited as a tool for “novelty detection”, allowing unusual
features within a data set to be identified (for a review, see
e.g. Marsland, 2002). Nevertheless, it is a factor that ought to
be borne in mind when a system is designed and used.

To avoid problems, it is important to choose training data
with care, and to develop strategies for evaluating and moni-
toring the performance of the trained system. It is often ben-
eficial to invest time in finding the best way to represent a
given data type, so as to accentuate the features of interest,
and remove irrelevant variables. This process is sometimes
referred to as “feature selection” (e.g. Guyon and Elisseeff,
2003). Thus, in the situation mentioned above, the valley pro-
files might be more usefully represented as variations rela-
tive to their highest (or lowest) points, rather than as a se-
quence of absolute elevations. In line with our comments in
Sect. 3.2, it is often helpful to “de-mean” and normalise the
data: using the training set, it is straightforward to compute
the mean input vector, as well as the standard deviation as-
sociated with each component of this. Then, all examples –
during training, and during operation – can be standardised
by subtraction of this mean and rescaling to give unit stan-
dard deviation. Clearly, the inverse of these transformations
may need to be applied before results are interpreted. For
more complex applications, specialist representations such
as the “geomorphons” developed by Jasiewicz and Stepin-
ski (2013) may be beneficial, and provide a targeted route to
encoding geomorphological information. Training examples
should be chosen to cover a spread of relevant cases, perhaps
including different regions or measurements made at differ-
ent times of year, to avoid introducing unintended biases into
results.

4.2 Assessing performance

For “supervised” learning algorithms, where a pre-defined
relationship or structure is to be learnt, it is possible to as-
sess performance using a second set of user-selected data –
often referred to as a “test” or “monitoring” data set. These
test data intended to provide an independent set of examples
of the phenomena of interest, allowing quantitative measures
of effectiveness to be evaluated; this strategy is sometimes
referred to as “cross-validation”. It is important to do this us-
ing examples separate from the training set in order to ensure
that the system’s “generalisation performance” is measured:
we want to be sure that the algorithm has learned proper-
ties that can be applied to new cases, rather than learning
features specific to the particular examples used during train-
ing. As an analogy: a dog may learn to respond to particular
commands, but only when issued in a very specific manner;

Earth Surf. Dynam., 4, 445–460, 2016 www.earth-surf-dynam.net/4/445/2016/

A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms 457

it cannot then be said to properly understand a spoken lan-
guage.

The metric by which performance is assessed is likely
to be situation-dependent. In general, a supervised learning
algorithm will be designed to optimise certain “error mea-
sures”, and these are likely to provide a good starting point.
Nevertheless, other statistics may also prove useful. For clas-
sification systems, analysis of “receiver operating character-
istics” (ROCs) such as hit and false positive rates may be
instructive (e.g. Fawcett, 2006). More difficult to quantify,
but still potentially valuable, is the experienced researcher’s
sense of the plausibility of a system’s predictions: do results
exhibit geomorphologically reasonable patterns? For exam-
ple, does a prediction of landslide risk seem plausible in its
relationship with the topography and underlying bedrock?

Assessing performance in unsupervised learning is more
challenging, as we may not have prior expectations against
which to measure results: fundamentally, it may be challeng-
ing to define what “good performance” should signify. In
many cases, application-specific statistics may be helpful –
for example, in cluster analysis it is possible to calculate the
standard deviation of each cluster, quantifying how tightly
each is defined – and again, the researcher’s sense of plausi-
bility may provide some insight. It may also prove instruc-
tive to repeat training using a different subset of examples,
to assess how stable results are with respect to variations in
the training data: a structure or grouping that appears consis-
tently is more likely to be real and significant than one that
is very dependent on the precise examples included in the
training set.

4.3 Overtraining and random noise

The phenomenon of “overtraining” or “overfitting”, which
typically arises in the context of supervised learning algo-
rithms, has already been alluded to. It occurs when an it-
erative training procedure is carried out for too many itera-
tions: at some point, the system usually begins to learn infor-
mation that is specific to the training examples, rather than
being general. This tends to reduce the performance of the
system when subsequently applied to unseen data. It can of-
ten be detected by monitoring the algorithm’s generalisation
performance using an independent set of examples as train-
ing proceeds: this enables the training procedure to be ter-
minated once generalisation performance begins to decrease.
In certain cases, post-training strategies can be used to re-
duce the degree of over-fitting: the example of “pruning”
decision trees has already been mentioned. It has also been
shown that “ensemble methods” may be useful (indeed, “ran-
dom forests” provide one example of an ensemble method),
whereby multiple instances of the same learning algorithm
are (over-)trained, from different randomised starting points,
and their outputs are then somehow averaged (e.g. Dietterich,
2000). Because each instance becomes sensitive to distinct
aspects of the training data, due to their different initialisation

conditions, each performs well on a subset of examples, and
poorly on the remainder. However, the overall performance
of the ensemble (or “committee”) as a whole is typically bet-
ter than that of any individual member.

Another strategy that is adopted is to add random noise to
the training data. The rationale here is that training examples
typically exhibit an underlying pattern or signal of interest,
overprinted by other processes and observational errors. In
order to learn the structure of interest, we wish to desensi-
tise our training procedure to the effects of this overprinting.
If we can define a “noise model” that approximates the sta-
tistical features of the unwanted signal, adding random real-
isations of this to each training example allows us to limit
the extent to which the algorithm learns to rely on such fea-
tures: by making their appearance random, we make them
less “useful” to the algorithm. Returning again to the exam-
ple of valley classification, local variations in erosion and
human intervention might be modelled as correlated Gaus-
sian noise on each topographic measurement. During train-
ing, each example is used multiple times, with different noise
on each occasion; in theory, this results in only the gross fea-
tures of the valley profile being taken into account for clas-
sification purposes. However, it may be challenging to iden-
tify and construct appropriate noise models in many realistic
cases.

It is worth noting here that a similar strategy may prove
useful in other cases where it is desirable to desensitise sys-
tems to particular aspects of the data. For example, spatial
observations are typically reported on a grid, aligned with
geographic coordinates. However, natural phenomena typi-
cally do not display any such alignment, and orientation in-
formation may be irrelevant in many cases. If 2-D spatial in-
formation is used in a particular case, it may be desirable to
make use of multiple, randomly rotated copies of each train-
ing set example. This allows an effectively larger training set
to be created, and reduces the chance that features are treated
differently depending on their alignment.

4.4 Operational considerations

As with any analysis technique, results obtained using learn-
ing algorithms can be misleading if not treated carefully. This
is especially true where a technique invites treatment as a
“black box”, and where the mechanism by which it operates
is not always easily understood. The great strength of arti-
ficial intelligence is that it enables a computer to mimic the
experienced researcher – but this is also a potential draw-
back, tending to distance the researcher from their data. In
some sense, this is an inevitable consequence of the ever-
increasing quantity of data available to researchers – but
there is a risk that it leads to subtleties being missed, or re-
sults interpreted wrongly due to misapprehensions surround-
ing computational processing. To minimise the risk of these
issues arising, it is important that researchers develop heuris-
tics and procedures that enable “intelligent” systems to be

www.earth-surf-dynam.net/4/445/2016/ Earth Surf. Dynam., 4, 445–460, 2016

458 A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms

monitored. For example, users of automated data classifica-
tion systems should monitor the statistical distributions of
classification outputs, and investigate any deviations from the
norm; it is also desirable to spot-check classifications. This
is particularly true in settings where there is a risk that new
examples lie outside the scope of the training set – perhaps
where data are drawn from new geographic regions, or were
collected at a different time of year.

Learning algorithms have immense potential in enabling
exploration of large, complex data sets and in automating
complicated tasks that would otherwise have to be done
manually. However, developing a learning algorithm system
– especially those targeted at classification, regression, or
interpolation – can also be time-consuming and resource-
intensive. Computational demands may also be significant:
although many applications require no more than a standard
laptop or desktop computer, some may only be viable with
access to large-scale parallel computing resources. By way
of an illustration for the more computationally intensive end
of the spectrum: training the learning algorithm used to cata-
logue seamounts in Valentine et al. (2013) currently requires
a few hundred CPU hours on a 1.9 GHz machine, in addi-
tion to considerable computational demands for processing
the raw bathymetric data. Thus, learning algorithms do not
currently present an economic solution to all problems – al-
though this balance will undoubtedly change as technology
and algorithms continue to evolve.

5 Outlook

In this paper, we have attempted to provide a general survey
of the field of learning algorithms, and how they might be
useful to researchers working in the fields of geomorphom-
etry and Earth surface dynamics. These fields benefit from
extensive, large-scale, feature-rich data sets, bringing oppor-
tunities and challenges in equal measure. Although currently
dominated by a few specific topics in the field, such as land-
slide hazard assessment, the use of artificial intelligence to
help explore, process, and interpret geomorphological data
is almost certain to be an increasingly significant aspect of
research in coming years.

An increased use of learning algorithms in geomorpholog-
ical communities is likely to require developments in com-
putational infrastructure. There are obvious requirements for
access to appropriate hardware and software resources, as
well as skill development. In particular, larger problems or
more complex algorithms may make use of parallel com-
puting and other high-performance computing techniques es-
sential. In addition, in light of the potentially substantial de-
velopment cost of implementing some of the more complex
learning algorithms, it is worth trying to plan for a flexible
implementation. Most of these approaches can, in principle,
be implemented in a fairly general framework, allowing the
same underlying algorithm to be applied to many problems.

The computational implications of both parallelisation and
generalisation are beyond the scope of this review, but one
area of particular relevance to the geomorphology commu-
nity concerns data input and output, and hence data format:
the ability to reuse an algorithm across multiple data types is
a key element of flexibility in a field with such a diversity of
measurements. The ability to handle large file sizes and sup-
port efficient data access, potentially in parallel, is also an
important consideration. As these techniques develop, this
places increasing importance on the development and use
of robust community standards for data formats. File frame-
works, which allow the development of multiple specialist
file formats all adhering to a common set of rules, may be
particularly valuable in combining consistency from an algo-
rithmic point of view with flexibility to accommodate varied
data.

However, learning algorithms are not a panacea. “Tradi-
tional” approaches to data analysis will remain important for
the foreseeable future, and are well suited to tackling many
problems; we do not advocate their wholesale replacement.
In addition, it is important that the use of more advanced
computational techniques is not allowed to become a bar-
rier between researchers and data; it is almost certain that
the nature and practice of “research” will need to evolve to
accommodate increasing use of these technologies. Some in-
teresting perspectives on these issues may be found in – for
example – an issue of Nature dealing with “2020 comput-
ing” (e.g. Muggleton, 2006; Szalay and Gray, 2006), and
in work aimed at developing a “robot scientist” (e.g. King
et al., 2009). Nevertheless, artificial intelligence opens up
many new possibilities within the fields of geomorphology
and Earth surface processes – particularly given the common
scenarios of large data sets; complex, interacting processes;
and/or natural variability that make many geomorphological
situations difficult to classify or model using conventional
techniques. Learning algorithms such as those discussed here
thus represent a powerful set of tools with the potential to
significantly expand our capabilities across many branches
of the field.

Acknowledgements. We are grateful to the associate editor,
John Hillier, and to Niels Anders, J. J. Becker, Ian Evans, and
Evan Goldstein for reviews and comments on the initial draft of
this manuscript. We also thank Jeannot Trampert for numerous
useful discussions. A. P. Valentine is supported by the European
Research Council under the European Union’s Seventh Framework
Programme (FP/2007-2013)/ERC grant agreement no. 320639.

Edited by: J. K. Hillier

References

Baeza, C. and Corominas, J.: Assessment of shallow landslide sus-
ceptibility by means of multivariate statistical techniques, Earth
Surf. Proc. Land., 26, 1251–1263, 2001.

Earth Surf. Dynam., 4, 445–460, 2016 www.earth-surf-dynam.net/4/445/2016/

A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms 459

Bayes, T.: An essay towards solving a problem in the doctrine of
chances, Philos. T. R. Soc. A, 53, 370–418, 1763.

Beechie, T. and Imaki, H.: Predicting natural channel patterns based
on landscape and geomorphic controls in the Columbia River
basin, USA, Water Resour. Res., 50, 39–57, 2014.

Belluco, E., Camuffo, M., Ferrari, S., Modenese, L., Silvestri, S.,
Marani, A., and Marani, M.: Mapping salt-marsh vegetation by
multispectral and hyperspectral remote sensing, Remote Sens.
Environ., 105, 54–67, 2006.

Bhattacharya, B., Price, R., and Solomatine, D.: Machine learn-
ing approach to modeling sediment transport, J.Hydraul. Eng.-
ASCE, 133, 440–450, 2007.

Bischof, H., Schneider, W., and Pinz, A.: Multispectral classifica-
tion of Landsat-images using neural networks, IEEE T. Geosci.
Remote S., 30, 482–490, 1992.

Bishop, C.: Neural Networks for Pattern Recognition, Oxford Uni-
versity Press, Oxford, UK, 1995.

Bishop, C.: Pattern Recognition and Machine Learning, Springer,
New York, USA, 2006.

Breiman, L.: Random Forests, Mach. Learn., 45, 5–32, 2001.
Brenning, A.: Spatial prediction models for landslide hazards: re-

view, comparison and evaluation, Nat. Hazards Earth Syst. Sci.,
5, 853–862, doi:10.5194/nhess-5-853-2005, 2005.

Cortes, C. and Vapnik, V.: Support-Vector Networks, Mach. Learn.,
20, 273–297, 1995.

Cuadrado, D. and Perillo, G.: Principal component analysis applied
to geomorpholigic evolution, Estuar. Coast. Shelf S., 44, 411–
419, 1997.

Das, I., Stein, A., Kerle, N., and Dadhwal, V. K.: Landslide sus-
ceptibility mapping along road corridors in the Indian Himalayas
using Bayesian logistic regression models, Geomorphology, 179,
116–125, 2012.

Dietterich, T.: Ensemble methods in machine learning, in: Multiple
classifier systems, in: Lecture Notes in Computer Science, edited
by: Kittler, J. and Roli, F., 1857, 1–15, Springer-Verlag, Berlin,
Germany, 2000.

Dunning, S., Massey, C., and Rosser, N.: Structural and geomor-
phological features of landslides in the Bhutan Himalaya de-
rived from terrestrial laser scanning, Geomorphology, 103, 17–
29, 2009.

Ehsani, A. and Quiel, F.: Geomorphometric feature analysis using
morphometric parameterization and artificial neural networks,
Geomorphology, 99, 1–12, 2008.

Ermini, L., Catani, F., and Casagli, N.: Artificial neural networks
applied to landslide susceptibility assessment, Geomorphology,
66, 327–343, 2005.

Fawcett, T.: An introduction to ROC analysis, Pattern Recogn. Lett.,
27, 861–874, 2006.

Friedel, M. J.: Modeling hydrologic and geomorphic hazards across
post-fire landscapes using a self-organizing map approach, Env-
iron. Modell. Soft., 26, 1660–1674, 2011.

Griffiths, G.: Stochastic Prediction in Geomorphology Using
Bayesian Inference Models, Math. Geol., 14, 65–75, 1982.

Gutierrez, B. T., Plant, N. G., and Thieler, E. R.: A Bayesian net-
work to predict coastal vulnerability to sea level rise, J. Geophys.
Res.-Earth, 116, F02009, doi:10.1029/2010JF001891, 2011.

Guyon, I. and Elisseeff, A.: An introduction to variable and feature
selection, J. Mach. Learn. Res., 3, 1157–1182, 2003.

Hartigan, J. and Wong, M.: A K-Means Clustering Algorithm, J.
Roy. Stat. Soc. C-App., 28, 100–108, 1979.

Hillier, J., Conway, S., and Sofia, G.: Perspective – Synthetic
DEMs: A vital underpinning for the quantitative future of land-
form analysis?, Earth Surface Dynamics, 3, 587–598, 2015.

Hinton, G. and Salakhutdinov, R.: Reducing the Dimensionality of
Data with Neural Networks, Science, 313, 504–507, 2006.

Hornik, K.: Approximation capabilities of multilayer feedforward
networks, Neural Networks, 4, 251–257, 1991.

Jain, A.: Data clustering: 50 years beyond K-means, Pattern
Recogn. Lett., 31, 651–666, 2010.

Jasiewicz, J. and Stepinski, T.: Geomorphons – a pattern recogni-
tion approach to classification and mapping of landforms, Geo-
morphology, 182, 147–156, 2013.

Jordan, M. and Mitchell, T.: Machine learning: Trends, perspec-
tives, and prospects, Science, 349, 255–260, 2015.

King, R., Rowland, J., Aubrey, W., Liakata, M., Markham, M.,
Soldatova, L., Whelan, K., Clare, A., Young, M., Sparkes, A.,
Oliver, S., and Pir, P.: The robot scientist Adam, Computer, 42,
46–54, 2009.

Kohonen, T.: The Self-Organizing Map, Proceedings of the IEEE,
78, 1464–1480, 1990.

Krasnopolsky, V. and Schiller, H.: Some neural network applica-
tions in environmental sciences. Part I: forward and inverse prob-
lems in geophysical remote measurements, Neural Networks, 16,
321–334, 2003.

Lee, S., Choi, J., and Min, K.: Landslide susceptibility analysis
and verification using the Bayesian probability model, Environ.
Geol., 43, 120–131, 2002.

Li, J., Heap, A., Potter, A., and Daniell, J.: Application of machine
learning methods to spatial interpolation of environmental vari-
ables, Environ. Modell. Soft., 26, 1647–1659, 2011.

Lippmann, R.: Pattern classification using neural networks, IEEE
Commun. Mag., 27, 47–50, 1989.

Lloyd, S.: Least squares quantization in PCM, IEEE T. Inform. The-
ory, 28, 129–137, 1982.

Mackay, D.: Information Theory, Inference and Learning Algo-
rithms, Cambridge University Press, Cambridge, UK, 2003.

Marjanović, M., Kovačević, M., Bajat, B., and Voženílek, V.: Land-
slide susceptibility assessment using SVM machine learning al-
gorithm, Eng. Geol., 123, 225–234, 2011.

Markou, M. and Singh, S.: Novelty detection: a review – part 2: neu-
ral network based approaches, Signal Process., 83, 2499–2521,
2003.

Marsh, I. and Brown, C.: Neural network classification of multi-
beam backscatter and bathymetry data from Stanton Bank (Area
IV), Appl. Acoust., 70, 1269–1276, 2009.

Marsland, S.: Novelty detection in learning systems, Neural Com-
puting Surveys, 3, 1–39, 2002.

Martin, K., Wood, W., and Becker, J.: A global prediction of
seafloor sediment porosity using machine learning, Geophys.
Res. Lett., 42, 10640–10646, 2015.

Mas, J. and Flores, J.: The application of artificial neural networks
to the analysis of remotely sensed data, Int. J. of Sens., 29, 617–
664, 2008.

Matías, K., Ordóñez, C., Taboada, J., and Rivas, T.: Functional sup-
port vector machines and generalized linear models for glacier
geomorphology analysis, Int. J. Comput. Math., 86, 275–285,
2009.

www.earth-surf-dynam.net/4/445/2016/ Earth Surf. Dynam., 4, 445–460, 2016

http://dx.doi.org/10.5194/nhess-5-853-2005
http://dx.doi.org/10.1029/2010JF001891

460 A. P. Valentine and L. M. Kalnins: An introduction to learning algorithms

Miliaresis, G. and Kokkas, N.: Segmentation and object-based clas-
sification for the extraction of the building class from LIDAR
DEMs, Comput. Geosci., 33, 1076–1087, 2007.

Mondini, A. C., Marchesini, I., Rossi, M., Chang, K.-T., Pasquar-
iello, G., and Guzzetti, F.: Bayesian framework for mapping and
classifying shallow landslides exploiting remote sensing and to-
pographic data, Geomorphology, 201, 135–147, 2013.

Muggleton, S.: Exceeding human limits, Nature, 440, 409–410,
2006.

Olden, J., Lawler, J., and Poff, N.: Machine Learning Methods
Without Tears: A Primer for Ecologists, Q. Rev. Biol., 83, 171–
193, 2008.

Pearson, K.: On Lines and Planes of Closest Fit to Systems of Points
in Space, Philos. Mag., 2, 559–572, 1901.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg,
V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Per-
rot, M., and Duchesnay, E.: Scikit-learn: Machine Learning in
Python, J. Mach. Learn. Res., 12, 2825–2830, 2011.

Peng, L., Niu, R., Huang, B., Wu, X., Zhao, Y., and Ye, R.: Land-
slide susceptibility mapping based on rough set theory and sup-
port vector machines: A case of the Three Gorges area, China,
Geomorphology, 204, 287–301, 2014.

Quinlan, J.: Induction of Decision Trees, Mach. Learn., 1, 81–106,
1986.

Quinlan, J.: C4.5: Programs for Machine Learning, Morgan Kauf-
mann, San Francisco, CA, USA, 1993.

Rumelhart, D., Hinton, G., and Williams, R.: Learning representa-
tions by back-propagating errors, Nature, 323, 533–536, 1986.

Sambridge, M. and Mosegaard, K.: Monte Carlo methods in geo-
physical inverse problems, Rev. Geophys., 40, 1–29, 2002.

Sammon, J.: A Nonlinear Mapping for Data Structure Analysis,
IEEE T. Comput., C-18, 401–409, 1969.

Schaul, T., Bayer, J., Wierstra, D., Sun, Y., Felder, M., Sehnke, F.,
Rückstieß, T., and Schmidhuber, J.: PyBrain, J. Mach. Learn.
Res., 11, 743–746, 2010.

Schmelter, M., Hooten, M., and Stevens, D.: Bayesian sediment
transport model for unisize bed load, Water Resour. Res., 47,
W11514, doi:10.1029/2011WR010754, 2011.

Sivia, D.: Data analysis: A Bayesian tutorial, Oxford University
Press, Oxford, UK, 1996.

Smith, M., Anders, N., and Keesstra, S.: CLustre: semi-automated
lineament clustering for paleo-glacial reconstruction, Earth Surf.
Proc. Land., 41, 364–377, 2016.

Szalay, A. and Gray, J.: Science in an exponential world, Nature,
440, 413–414, 2006.

Tamene, L., Park, S., Dikau, R., and Vlek, P.: Analysis of factors de-
termining sediment yield variability in the highlands of northern
Ethiopia, Geomorphology, 76, 76–91, 2006.

Valentine, A., Kalnins, L., and Trampert, J.: Discovery and analysis
of topographic features using learning algorithms: A seamount
case-study, Geophys. Res. Lett., 40, 3048–3054, 2013.

Wu, X., Kumar, V., Quinlan, J., Ghosh, J., Yang, Q., Motoda, H.,
McLachlan, G., Ng, A., Liu, B., Yu, P., Zhou, Z.-H., Steinbach,
M., Hand, D., and Steinberg, D.: Top 10 algorithms in data min-
ing, Knowl. Inf. Syst., 14, 1–37, 2008.

Yao, X., Tham, L., and Dai, F.: Landslide susceptibility mapping
based on Support Vector Machine: A case study on natural slopes
of Hong Kong, China, Geomorphology, 101, 572–582, 2008.

Earth Surf. Dynam., 4, 445–460, 2016 www.earth-surf-dynam.net/4/445/2016/

http://dx.doi.org/10.1029/2011WR010754

	Abstract
	Introduction
	Learning algorithms: a general overview

	Some general classes of geomorphological problem
	Classification and cataloguing
	Cluster analysis and dimension reduction
	Regression and interpolation

	Some popular techniques
	Decision trees and random forests
	The k-means algorithm
	Principal component analysis
	Neural networks
	Support vector machines
	Self-organising maps
	Bayesian inference

	Practical considerations
	Constructing a training set
	Assessing performance
	Overtraining and random noise
	Operational considerations

	Outlook
	Acknowledgements
	References

