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S U M M A R Y
What makes a seismogram look like a seismogram? Seismic data sets generally contain
waveforms sharing some set of visual characteristics and features—indeed, seismologists
routinely exploit this when performing quality control ‘by hand’. Understanding and harnessing
these characteristics offers the prospect of a deeper understanding of seismic waveforms, and
opens up many potential new techniques for processing and working with data. In addition,
the fact that certain features are shared between waveforms suggests that it may be possible to
transform the data away from the time domain, and represent the same information using fewer
parameters. If so, this would be a significant step towards making fully non-linear tomographic
inversions computationally tractable.

Hinton & Salakhutdinov showed that a particular class of neural network, termed ‘autoen-
coder networks’, may be used to find lower-dimensional encodings of complex binary data
sets. Here, we adapt their work to the continuous case to allow the use of autoencoders for
seismic waveforms, and offer a demonstration in which we compress 512-point waveforms to
32-element encodings. We also demonstrate that the mapping from data to encoding space, and
its inverse, are well behaved, as required for many applications. Finally, we sketch a number
of potential applications of the technique, which we hope will be of practical interest across
all seismological disciplines, and beyond.

Key words: Time-series analysis; Neural networks, fuzzy logic; Self-organization; Statistical
seismology; Wave propagation.

1 I N T RO D U C T I O N

Fig. 1 shows several different time-series. All are scaled to have am-
plitudes spanning the range [−1, 1], and for each, 500 samples are
shown. Yet even a passing familiarity with seismic data is sufficient
to identify which trace is a seismogram. Why?

The answer, of course, is that we expect a seismic signal to
have certain characteristics and properties. Some of these are fairly
general: all seismograms exhibit oscillatory behaviour on some
timescale, and contain distinct wave packets. Others are specific to
a particular class of data—for example, surface wave trains tend
to have a particular appearance in a given frequency band. With
exposure to seismic data, in undergraduate courses and beyond,
we learn to recognize these features, and gain a feel for what a
seismogram ‘should’ look like.

Mathematically, what does this mean? An N-point digital seis-
mogram can be considered as a single entity: one point in an N-
dimensional ‘time-series space’. Our assertion that not all time-
series are plausible seismograms implies that ‘seismogram space’
is a subset of this—it is possible to find a lower-dimensional space in
which all N-point seismograms are still representable. Time-series
clearly not of seismic origin would not be representable in this
space.

Understanding this lower-dimensional space could provide many
advantages and potential applications (Cottrell 2006). Clearly, it
may help us understand and interpret the various features observed
in seismic data sets, and may promote the development of new
techniques for enhancing sensitivity or resolution in images of earth
structure or source processes. Computation may be conducted in the
lower-dimensional space, with attendant benefits in computation
time—in particular, a reduction in data set dimension is likely to
be of great importance if non-linear tomographic inversion is to
be seriously pursued. Furthermore, knowledge of a space in which
only plausible seismic data is representable opens up new avenues
for the automated processing of real data.

The representation of data sets using fewer parameters has ob-
vious links to data compression, and in this context two papers
by Shannon (1948, 1949) may be of particular interest, laying out
mathematical foundations for transmission of data through noisy
channels. However, it should be remembered that this is a different
situation from that encountered by seismologists, for whom noise
is already present in the data set.

In recent years, compressive sensing (e.g. Donoho 2006; Tsaig
& Donoho 2006; Candès & Wakin 2008) has attracted much at-
tention. This is targeted at data-acquisition problems, for signals
which are known to have a sparse representation in some basis.

C© 2012 The Authors 1183
Geophysical Journal International C© 2012 RAS

Geophysical Journal International



1184 A. P. Valentine and J. Trampert

Figure 1. ‘Spot the seismogram’. Four 500-point time-series, normalized
to take amplitudes in the range [−1, 1]—but the seismogram has sufficient
characteristic features to make it instantly recognizable. From top: FTSE
100 closing prices, 2009 June–2011 May; monthly mean temperature for
central England, 1950–1991 (Parker et al. 1992); Gaussian random noise;
long-period surface wave seismogram.

Rather than recording individual samples in space or in time, it
is possible to measure particular linear functionals of these sam-
ples, from which the original signal can be reconstructed. This has
found application in geophysics, particularly in exploration seismol-
ogy, where similar methods were already known: see, for example,
Herrmann et al. (2009) or Wang et al. (2011). Also of interest are
wavelet-based methods, which have found a range of different ap-
plications in seismology (e.g. Chakraborty & Okaya 1995; Operto
et al. 2002; Simons et al. 2011). Typically, these involve techniques
for developing and exploiting a sparse basis relevant to a particular
application.

We stress, at the outset, that the approaches discussed in this pa-
per are not intended for the compression of data sets with a view
to reducing storage or transmission costs. Such tasks are best han-
dled by one of the mature compression algorithms that are readily
available (e.g. Ziv & Lempel 1977, implemented as gzip). These
typically exploit repetitive sequences in the binary representation of
data, and are fast, lossless and widespread. Our approach attempts
to exploit patterns in the data set itself, and is typically lossy; how-
ever, it attempts to isolate the characteristics specific to a particular
seismogram amidst those common to all seismograms (or all seis-
mograms of a particular class). These characteristics may then be
the subject of further computation or analysis, with the dimension
reduction or ‘compression’ thus achieved leading to greater com-
putational efficiency. Our method also allows for the identification
of waveforms that do not share the general characteristics of a par-
ticular class of data, providing an efficient approach for automating
the extraction of subsets from large waveform catalogues.

Our approach is based on the work of Hinton &
Salakhutdinov (2006), and employs a particular class of neural
network—the ‘autoencoder’. We begin by setting out the problem
in general terms: assuming that seismograms can be represented in
a lower-dimensional space, what properties would the transforma-
tion have and how might it be used? We then introduce autoencoder
networks as a route to identifying and implementing this transfor-

mation, and demonstrate that they do indeed allow seismic data
sets to be represented with fewer parameters. Finally, we show
one potential application—quality assessment of seismograms, as
in Valentine & Woodhouse (2010)—and discuss other promising
avenues.

2 E N C O D I N G S A N D D E C O D I N G S :
S O M E G E N E R A L P RO P E RT I E S

To motivate the current work, and to provide some general in-
sight, we first consider the abstract problem of mapping a high-
dimensional data set into a lower-dimensional space; in doing so,
we try to strike a balance between mathematical formalism, and
clarity. We suppose that some class of data naturally exists in N
dimensions: for our purposes, this can be taken to be N-point dig-
ital seismograms. For most practical purposes, we further assume
that the ‘class’ of seismogram is restricted such that its members
would be recognized by a seismologist as ‘similar’—inter alia, we
expect them to share a common sampling rate, and be processed in
such a way that the traces are comparable. For some applications, it
may be desirable to restrict the class further: for example, it might
contain all continuous N-point sequences recorded by a particular
station in some time frame, or be the set of all N-point seismograms
recorded worldwide starting from a given time. However, the class
is defined, we denote the set of all possible members by S

N ⊂ R
N ,

where R
N has its common meaning as the N-dimensional space of

real numbers.

2.1 Encoding and decoding operations

We intend here that S
N is the set of theoretical or ‘true’ data, and

may be infinite; typically, we have access to a finite number of noisy
samples from S

N . We now assume that for any example si drawn
from S

N , it is possible to compute an M-element ‘encoding’—that
is, we can transform si into an M-dimensional space. We denote
this encoding by ti , and represent the transformation by

ti = enc
N→M

(si ) . (1)

For present purposes, we simply assume that such an encoding
operation exists; we also restrict ourselves to the case where M <

N . We define T
M to be the set of all possible ti generated from

members of S
N —in mathematical terms, it is the image of S

N

under the encoding operation, denoted

T
M = enc

N→M

[
S

N
]

. (2)

For each element in T
M , we also suppose that there is a ‘decoding’

operation, so that

s′
i = dec

M→N
(ti) , (3)

and we define

S
′N = dec

M→N

[
T

M
]

. (4)

Thus, the combined effect of encoding and decoding operations is
to map each element of S

N onto an element of S
′N .

In the ideal case, dec(t) = enc−1(t), so that S
′N = S

N and
s′

i = si . However, in general this may not hold, and we quantify
the ‘reconstruction error’ for a particular example by some metric,
such as the sum of squares difference between original and decoded
seismogram

Ei = 1

2

(
s′

i − si

) · (
s′

i − si

)
. (5)
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Figure 2. The cost of compression. Sketch of relationship between compression ratio N /M and reconstruction error, Ē . When attempting to represent an
N-dimensional system S

N in M dimensions (M < N), we expect to move through three regimes as M is reduced: ‘lossless’, where all elements of S
N can be

perfectly recovered; ‘acceptably lossy’, where most features of S
N can be reproduced, and only minor differences between the original and its reconstruction

are observed and ‘unusable’, where the compression rate is too high to allow even the basic structure of S
N to be represented. The width of the first two regimes

will vary between data sets, and either or both may not be observed in a particular case.

Clearly, Ei = 0 for a perfect reconstruction. The average error across
all possible members of S

N is then given by

Ē = lim
Q→∞

1

Q

Q∑
i=1

Ei , (6)

which can be estimated using a finite number of representative
samples from the set, because the variability of samples from S

N is
taken to be relatively small. For a given S

N and encoding dimension
M , an optimal encoder–decoder pair is one which minimizes Ē .

Intuitively, we expect the best value of Ē attainable to depend
upon the ratio N /M , with three regimes as shown in Fig. 2. Some
lossless compression may be possible, depending on the properties
of S

N , and we define M0 to be the dimension of the smallest space in
which S

N can be represented without loss. If we attempt to achieve
a compression ratio greater than N /M0, the encoding–decoding op-
eration will be lossy, but for many applications a small increase in Ē
may be acceptable for lower M . Eventually, however, M will become
too small to allow even the basic structure of S

N to be represented,
and Ē will grow rapidly. In this paper, we will be concerned mainly
with the ‘acceptably lossy’ regime.

2.2 The encoding space, T
M

Any sensible choice of encoder and decoder will ensure that every
possible output from the encoding operation is a valid input to the
decoding operation; that is

R
(

enc
N→M

)
⊆ D

(
dec

M→N

)
, (7)

where D and R are used to denote the domain and range (image)
of a function, respectively. From the definition in eq. (2), we must
have

T
M ⊆ R

(
enc

N→M

)
, (8)

with equality for an ideal encoder–decoder system in any case where
M < M0: in other words, an ideal encoder will make use of its full

range of output values for representing S
N . A consequence of this is

that any point withinD(enc) will encode to a point in T
M , regardless

of whether it lies in S
N .

An ideal encoder–decoder system seeks to identify the character-
istics common to all members of S

N , and encapsulates these within
the encoding and decoding functions. The information contained in
each ti ∈ T

M is, therefore, only that necessary to distinguish be-
tween individual samples within the set. If the encoding is lossy, and
Ē > 0, some distinct members of S

N must map to the same point in
T

M : essentially, the finer details of S
N become blurred. In general,

if Ē is to be minimal, only elements of S
N that are ‘close’ may share

an encoding in T
M , where the precise definition of ‘close’ depends

on the detail of Ē and its definition. In general, we wish the mapping
to be ‘well behaved’, and preserve relationships between elements:
if two examples are ‘close’ in S

N , we desire them to be ‘close’ in
T

M . This allows many calculations that are typically performed on
the data to be translated into the encoding space, with an accuracy
governed by Ē . However, it is not possible to state general results
without knowledge of the form of the encoding operation.

2.3 The data space, S
N: a test for membership

We have yet to define the domain of the encoding operation—so
far, we have simply required that it exists for every element in S

N .
Formally, this implies

S
N ⊆ D

(
enc

N→M

)
, (9)

but the reader will recall our statement at the start of this section
that S

N represents the theoretical data space, and its elements are
free of noise and other difficulties. A practical encoder should be
able to handle real data; in any case, it is likely to be difficult to
formulate an a priori definition of S

N . We therefore require that

D
(

enc
N→M

)
= R

N . (10)
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What happens if we encode some N-element vector r that is not
a member of S

N ? From eq. (10), r will be a valid input to the
encoding operation; as discussed following eq. (8), the output will
lie in T

M . If we then decode the result, eq. (4) implies that we obtain
a reconstruction, r′, lying within S

′N . Thus, the reconstruction of
a signal that is in S

N is indistinguishable from the reconstruction
of one that is not. However, the reconstruction errors (eq. 5) will
differ considerably: members of S

N will have low values, broadly
comparable with Ē ; non-members will typically show large errors.
This provides a straightforward test for whether a given trace is
likely to be a sample from S

N , to within a tolerance governed by
Ē .

2.4 From theory to practice

Thus far, we have simply assumed that the encoding and decod-
ing mappings exist; we have offered no suggestion as to how they
might be realized in practice. It might appear difficult to do so,
particularly given the difficulty in formulating a robust and com-
prehensive description of S

N . However, neural networks provide a
possible solution, and in particular, a class of networks known as
‘autoencoders’ (Hinton & Salakhutdinov 2006). The power of neu-
ral networks lies in their ability to ‘learn’ a mapping, given only
samples of its inputs and outputs. Although we may not be able
to fully define S

N for any given situation, we can easily obtain a
large number of samples from it. As we shall see, this allows us to
discover encoding and decoding operations that satisfy the various
requirements of eqs (1)–(10).

To conclude this section, we note that although we cannot define
S

N a priori, we can map out S
′N once we have obtained an optimal

encoder–decoder pair. From eq. (4), S′N is the image of T
M under the

decoding operation, and we have already observed that T
M should

be equivalent to R (enc), which will be known. A uniform sampling
of T

M can then be used to assess the form of S
′N . Provided Ē is

small, this provides a good estimate of S
N , although the topology

of S
′N will be influenced by the form of the encoding and decoding

mappings.

3 L E A R N I N G M A P P I N G S B E T W E E N
S PA C E S : N E U R A L N E T W O R K S

Neural networks are thought to provide a mathematical analogue for
the way in which humans learn to process and interpret information.
Their key advantage lies in their ability to model systems that are not
well understood: unlike classical approaches, there is no need for
the user to develop a detailed understanding of the system dynamics
before implementing a model. Instead, the network is provided with
a set of inputs, and the corresponding desired outputs; from these, it
attempts to ‘learn’ the underlying relationship. After ‘training’, the
network may be used for prediction, much like a traditional model.

A network consists of a large number of interconnected
‘neurons’—typically simple functions that take many inputs and
return a single output, with the precise relationship governed by
a number of adjustable weights. Generally, neurons are arranged
in ‘layers’, with the outputs from one layer being used as inputs
to the next. By varying the weights, the behaviour of the network
can be altered, and ‘training’ involves optimizing the weights for a
particular case. It can be shown that arbitrarily complex mathemati-
cal functions are representable by neural networks, although factors
such as size and architecture may limit the range of any particular
network.

Neural computing is an active research field, and for a thorough
introduction the interested reader is encouraged to consult one of
the many books on the subject (e.g. Bishop 1995; Mackay 2003). A
number of introductory surveys may also be found, written from a
variety of perspectives: examples include those by Kohonen (1988),
Cheng & Titterington (1994) and Basheer & Hajmeer (2000). Re-
views aimed at researchers in the geosciences include those of van
der Baan & Jutten (2000) and Mas & Flores (2008), and geophysical
applications are covered in a book by Sandham & Leggett (2004).
Such applications include non-linear inversion (e.g. Meier et al.
2007; Ho 2009), feature classification (e.g. Shimshoni & Intrator
1998; Tingdahl & de Rooij 2005) and data selection (e.g. Dai &
MacBeth 1995; Gentili & Micheli 2006; Valentine & Woodhouse
2010; Diersen et al. 2011).

3.1 Autoencoder networks

In this paper, we will make use of a particular class of neural net-
work, known as an ‘autoencoder’. These were set out by Hinton
& Salakhutdinov (2006), and are, essentially, networks trained to
output faithful reproductions of their inputs. However, the network
architecture is such that the intermediate layers contain fewer neu-
rons than the top- and bottom-level layers (see Fig. 3). The network
can therefore be regarded as a connected encoder–decoder pair,
with the layer containing the smallest number of neurons provid-
ing the encoded representation of the inputs. Because each layer
depends only on the values of the previous layer, knowledge of
the encoding is sufficient to compute the corresponding reconstruc-
tion. Hinton & Salakhutdinov (2006) focus on autoencoders for
binary data sets; it will be necessary to adapt this to the continuous
case.

It is common to describe autoencoders by specifying the number
of nodes in each layer; thus, that shown in Fig. 3 is a 7–6–4–6–7
autoencoder. For reasons that shall later become apparent, we shall

Figure 3. Architecture of an autoencoder network. Successive layers of
nodes detect patterns in input data, and use these to generate an encoded
representation of the data. The corresponding decoder takes encodings, and
attempts to reconstruct the original inputs. The network training algorithm
involves adjusting the behaviour of each node to bring reconstructions closer
to data. Networks may be described by the number of nodes in each layer;
shown is a 7–6–4–6–7 autoencoder. In practice, several more layers would
be used.
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restrict ourselves to what might be termed ‘symmetric’ networks,
where the layers in the decoder mirror those in the encoder. We
note here a potential source of confusion: neural networks tend to
be described in terms of the number of layers of neurons, whereas
it is arguably more natural to think of autoencoders in terms of the
number of layers of nodes. For the avoidance of doubt, the network
depicted in Fig. 3 has five layers of nodes, connected by four layers
of neurons.

3.1.1 Network architecture

Autoencoders are distinguished from more general neural net-
works by the fact that their outputs are desired to be the same
as their inputs. However, the manner in which the network oper-
ates, and may be trained, is quite standard—although as Hinton &
Salakhutdinov (2006) have shown, the addition of a layer-by-layer
pre-training stage allows much faster convergence. We shall return
to this shortly; however, we first summarize the equations govern-
ing the network as a whole. Because neural networks are likely to
be unfamiliar to many readers, a more detailed derivation of these
results can be found as an Appendix to this paper.

In general, an individual neuron may have a number of inputs.
These may be represented by a vector quantity, x, of dimension l.
Associated with the neuron is an l-element weight vector, denoted
w, controlling the significance attached to each input by that neuron.
The neuron also has an internal ‘bias’, b, to control the threshold at
which the neuron’s output changes, and a ‘sensitivity’, a, governing
the overall responsiveness of the neuron. All neurons used in this
study output a single value, according to

y = f (ab + a(w · x)) , (11)

where f (x) represents some ‘activation function’. In this paper, we
restrict ourselves to the case where each neuron in the network
implements a logistic function, with general form

f (x) = f0 + f1 − f0

1 + exp (−x)
, (12)

where f 0 and f 1 govern the lower and upper limits of the output. It
has derivative

d f

dx
= ( f1 − f0)

exp (−x)

[1 + exp (−x)]2

= 1

f1 − f0
[ f (x) − f0] [ f1 − f (x)] , (13)

and is shown in Fig. 4.
As previously mentioned, a network consists of multiple layers

of neurons, with all neurons in one layer receiving the same inputs.
However, the weights and biases are initially randomized, so that
the output of one neuron differs from that of the next, and so that
they may exhibit sensitivity to different aspects of the inputs. We
shall denote the outputs of the nth layer of neurons by the vector
quantity x(n), and this is used as the input to the (n + 1)th layer. We
therefore denote the inputs to the first layer—and thus to the network
as a whole—by x(0). The weights connecting two adjacent layers are
denoted by the matrix W(n), and the sensitivities and biases for all
neurons in a given layer can be denoted by the vector quantities a
and b, respectively. Each layer of the network then implements

x(n) = f
(
a(n) ∗ b(n) + a(n) ∗ (

W(n)x(n−1)
))

, (14)

where we use ‘∗’ to denote elementwise multiplication of vector or

Figure 4. The logistic function. Plots of f (ax) = f0 + f1− f0
1+exp(−ax) (solid

lines) and their derivatives, ∂ f
∂x (dashed lines), for three values of a, and with

f 0 = −1, f 1 = 1. Note that the logistic function approaches a step function
as a increases.

matrix quantities, so that

[a ∗ b]i = ai bi

[A ∗ b]i j = Ai j bi

[A ∗ B]i j = Ai j Bi j (15)

for vector quantities a and b, and matrix quantities A and B. We use
f(x) to denote a vectorized form of f (x), so that

[f(x)]i = f (xi ) . (16)

If the nth layer contains K(n) neurons, it will be apparent that a(n)

and b(n) must have K(n) elements, and that W(n) has dimension
K(n) × K(n−1). Each row of W corresponds to w in eq. (11) for one
neuron. Because we typically wish to work with data sets containing
numerous examples, we note that eq. (14) can describe operations
on the entire data set simultaneously if the various x(n) are regarded
as K(n) × Q matrices, where Q represents the number of examples
in the data set.

We define L such that x(L) represents the output layer of nodes—
the ‘reconstruction’ of Fig. 3. Because we are indexing the input
layer as x(0), the ‘encoding’ is represented by x(L/2); to translate to the
notation used in Section 2, x(0) → {si } ⊂ S

N , x(L/2) → {ti } ⊂ T
M

and x(L) → {
s′

i

} ⊂ S
′N . Clearly, K(0) = K(L) = N , and K(L/2) = M .

Thus, eq. (14) fully describes the operation of our network.

3.1.2 Network training

In order to train the network, we must define an error function, which
we shall seek to minimize. We wish the network to produce outputs
as close as possible to its inputs: for a perfect encoder–decoder pair,
they should be identical, as set out in Section 2. As suggested in
eq. (5), we therefore choose to minimize the average Euclidean
distance between desired and actual outputs across the entire data
set

E = 1

2Q

∑
i, j

(
x (L)

i j − x (0)
i j

)2
. (17)

This can be achieved using, for example, the ‘back-propagation al-
gorithm’, a standard method in the neural network literature, which
essentially adopts a gradient descent approach. We define the quan-
tity �(n), representing the back-propagated error in layer n of the
network

�(n−1) = W(n)T (
�(n) ∗ u(n) ∗ a(n)

)
, (18)
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�(L) = x(L) − x(0) . (19)

We also define the matrix quantity u(n), based on the derivative of
the logistic function given in eq. (13), as

u(n)
i j = 1

f1 − f0

(
x (n)

i j − f0

) (
f1 − x (n)

i j

)
. (20)

It can then be shown (as in the Appendix) that the overall network
error is reduced by updating all biases, weights and sensitivities
simultaneously, according to

b(n)
i → b(n)

i − η

Q

∑
j

�
(n)
i j u(n)

i j a(n)
i (21)

W (n)
i j → W (n)

i j − η

Q

∑
k

�
(n)
ik a(n)

i u(n)
ik x (n−1)

jk (22)

a(n)
i → a(n)

i − η

Q

∑
j

�
(n)
i j u(n)

i j

(
b(n)

i +
∑

k

W (n)
ik x (n−1)

k j

)
. (23)

Here, η is a positive constant that governs the ‘learning rate’ of
the network. Provided that η is sufficiently small that second-order
derivatives may be neglected, repeated application of these formulae
over many iterations allows the network to find optimal values for
all weights.

Typically, we wish the network to assimilate the general proper-
ties of the training set, rather than the precise form of each trace—
as we shall see, the latter tends to have an adverse effect on the
network’s ability to handle examples that were not present in the
training set. It is, therefore, usual to assess the evolution of the net-
work during training through the use of a ‘monitoring’ data set. This
is chosen to be equivalent to—but independent from—the data set
used during training (x(0)): in the notation of Section 2, it contains
further samples from S

N . As training progresses, the reconstruction
error for this set is monitored, and the training algorithm is termi-
nated if this becomes essentially static over a number of iterations,
or if it begins to increase.

3.1.3 Noise

In a similar vein, it may be desirable to introduce noise into the sys-
tem during training, so that the ‘precise form’ of each trace becomes
blurred. By introducing small random variations in the training data,
we desensitize the network to minor details and emphasize the over-
all characteristics of each trace. In some sense, this is similar to the
need to make use of regularization in geophysical inverse problems.

We achieve this by adding random, Gaussian noise to each point
in the training set; we repeat this afresh on each iteration of the
training algorithm, so that the training data received by the network
is never identical between iterations. This therefore corresponds to
the transformation

x (0)
i j → x (0)

i j + G(0, σ (A)) , (24)

where G(μ, σ ) denotes a random sample from a Gaussian distribu-
tion of mean μ and standard deviation σ .

3.2 Network pre-training: continuous restricted
Boltzmann machines

In principle, given an appropriate data set, we are now in a position to
train an autoencoder. We would start with w

(n)
i j and b(n)

i randomized,

typically to a Gaussian distribution (see below), set all a(n)
i = 1,

and use eqs (21)–(23) repeatedly. However, this turns out to be
beset by problems. Initially, the outputs from the network are far
removed from the inputs, and depending on the topology of the
‘error surface’ defined by eq. (17), our training algorithm may not
arrive at the desired, global, minimum. Even if it does, convergence
will typically be extremely slow. As a result, it is helpful to ‘pre-
train’ the network, so that when we begin to apply eqs (21)–(23),
we are in the vicinity of the desired minimum.

Hinton & Salakhutdinov (2006) suggest the use of ‘restricted
Boltzmann machines’ (RBMs) for this. These are simple, two-layer
networks, which employ a stochastic learning rule to identify ‘fea-
tures’ within input data (Ackley et al. 1985; Hinton 2002; Mackay
2003; Hinton 2010). Generally, their application lies in the recog-
nition of familiar patterns amidst noise. Conventional RBMs have
binary inputs and outputs, but it is possible to extend this to the
continuous case. We shall follow the treatment in Chen & Murray
(2003).

3.2.1 Continuous restricted Boltzmann machines

The operation of a ‘continuous restricted Boltzmann machine’
(CRBM) is straightforward, and has clear similarities with the net-
work architecture already discussed. The CRBM is a two-layer net-
work; the value, xh

i of the ith node in the second, ‘hidden’ layer is
related to the values of the Kv ‘visible’ nodes xv

j via

xh
i = f

⎛
⎝ah

i

⎡
⎣bh

i +
Kv∑
j=1

wi j x
v
j + G (

0, σ (C)
)⎤⎦

⎞
⎠ , (25)

where f (x) is the logistic function defined in eq. (12), and where
G(μ, σ ) again represents a random sample from a Gaussian distri-
bution. As before, we have weights wij, a bias bh

i and a sensitivity,
ah

i . However, the network is simpler, and may operate in a stochastic
fashion. As we shall see, it also has a quite different training rule.

Eq. (25) provides a rule for updating the hidden nodes, given
values for the visible nodes. We can specify a similar rule to update
the visible nodes,

xv
j = f

(
av

j

[
bv

j +
Kh∑

i=1

wi j x
h
i + G (

0, σ (C)
) ])

. (26)

Note that the visible-to-hidden and hidden-to-visible connections
share the same (transposed) weight matrix, but in general have
different biases and sensitivities.

CRBM training seeks to find and enhance correlations between
the values of visible and hidden nodes. Typically, this is done via an
algorithm known as ‘minimizing contrastive divergence’ (Hinton
2002). The visible nodes of the network are initially set to match
some example from the training data set; we denote their values by
the vector, xv. Using eq. (25), we can compute states for the hidden
nodes, xh. We then use these in conjunction with eq. (26) to generate
a ‘reconstruction’ of the inputs, x̂v; finally, this reconstruction is used
to obtain updated hidden values, x̂h. We then update the weights,
biases and sensitivities according to

bh,v
i → bh,v

i + η

[〈
xh,v

i

〉
−

〈
x̂h,v

i

〉]
(27)

wi j → wi j + η

[〈
xh

i xv
j

〉
−

〈
x̂h

i x̂v
j

〉]
(28)
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Figure 5. Assembling the autoencoder. A 500-250-125-250-500 autoencoder is generated using weights, biases and sensitivities taken from two trained
CRBMs; one has 500 visible and 250 hidden nodes, the other has 250 visible and 125 hidden nodes. The second CRBM is trained using data that has been
‘encoded’ by the first. The CRBMs are used to initialize the autoencoder with reasonable values; these are then refined according to the network training
algorithm. After Hinton & Salakhutdinov (2006).

ah,v
i → ah,v

i + η(
ah,v

i

)2

[〈(
xh,v

i

)2
〉
−

〈(
x̂h,v

i

)2
〉]

, (29)

where angled brackets 〈χ〉 denote the average value of χ across
all samples in the training set. Eq. (29), in particular, relies on an
approximation to an integral; for further details, see Chen & Murray
(2003).

This training process encourages the CRBM to find and enhance
relationships between visible and hidden nodes, so that the hidden
nodes become—in some sense—an encoding of the visible nodes.
The stochastic dynamics of the system desensitize the network to
noise, and encourage fuller exploration of the possible states of the
system than is seen with gradient descent methods such as back-
propagation. In addition, each CRBM contains a fraction of the
number of free parameters in the autoencoder, leading to better
convergence properties. As a result, the CRBM learning algorithm
provides a useful technique to pre-train each layer of our autoen-
coder separately.

3.2.2 Application to pre-training

Suppose, for the sake of argument, that we wish to generate a
500-250-125-250-500 autoencoder; we begin by training a CRBM
with 500 visible nodes, and 250 hidden nodes (see Fig. 5). Once a
certain number of training iterations have been conducted, we use
that CRBM to convert our training database, containing numerous
500-element vectors, into a new training set containing 250-element
vectors. These are used to train a new CRBM, with 250 visible
nodes and 125 hidden ones. We are then in a position to assemble
the autoencoder, using the weights, biases and sensitivities from the
CRBMs: we initialize the autoencoder by identifying

wC1 → W(1) ; bh
C1 → b(1) ; ah

C1 → a(1) ;

wC2 → W(2) ; bh
C2 → b(2) ; ah

C2 → a(2) ;

wT
C2 → W(3) ; bv

C2 → b(3) ; av
C2 → a(3) ;

wT
C1 → W(4) ; bv

C1 → b(4) ; av
C1 → a(4) . (30)

Here, subscript C1 refers to the first (500-250) CRBM, and C2
denotes the second (250-125). Unsubscripted quantities relate to the
autoencoder. At this point, we proceed with training the autoencoder
according to eqs (21)–(23); in particular, there is no requirement
for the decoder-layer weights to retain the transpose relationship

with the encoder-layer counterparts. We make no further use of the
CRBMs themselves.

3.3 Practicalities

As always, a number of practical matters must be addressed in order
to successfully implement this theory for seismic data sets. We note
that much helpful advice on CRBMs and their training may be found
in Hinton (2010), and that this has influenced our approach.

3.3.1 Data preparation and weighting

Implicit in the use of logistic neurons of the form of eq. (12) is that
only values in the range [f 0, f 1] are representable. We, therefore,
scale all waveforms by their maximum amplitude, to ensure that
all data points are in the range [−1, 1]. A full reconstruction of
the original data therefore requires this scale factor to be known,
in addition to the encoded form of the trace. However, we cannot
simply set f 0 = −1, f 1 = 1. We must recognize that recorded
seismic data contains a significant random noise component, which
may increase or decrease the signal at any particular point in time.
It is therefore possible that the ‘true’ seismogram—which we are
seeking to represent in our reduced-dimension space—may have
a greater maximum amplitude than that recorded. We, therefore,
choose f 0 and f 1 to span a moderately larger range than the data;
typically, we use f 0 = −1.1, f 1 = 1.1.

As things stand, the training algorithms set out in the previous
section assign equal significance to each datum, and attempt to fit
all equally well. We note that the average power in a signal s(t) is
defined

P̄ = 1

T

∫ T

0
|s(t)|2 dt , (31)

or, when this is digitized into N samples {s1, s2, . . . , sN},

P̄ = 1

N − 1

N∑
i=1

s2
i . (32)

A comparison of eqs (17) and (32) makes it clear that the training
algorithms seek to minimize the power of any parts of the training
data that may be lost in the encoding–decoding process. Because
our assertion is that this unrepresented portion of the data corre-
sponds largely to the noise component, we should ensure that the
noise power is broadly equivalent between traces. This is somewhat
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difficult to quantify, but it is clear that the scaling of individual wave-
forms will distort matters. By giving all traces the same maximum
amplitude, we effectively increase the significance of the noise in
those traces that originally had a lower amplitude, and the training
algorithm will attempt to learn this at the expense of ‘useful’ signal
in the higher amplitude traces. To counteract this, we introduce a
weight into the various learning rules. If we attach a weight φj to
the jth trace, the error function defined in eq. (17) becomes

E = 1

2

∑
i, j

φ j

(
x (L)

i j − x (0)
i j

)2
(33)

and the network parameter update rules (eqs 21–23) become,
straightforwardly

b(n)
i → b(n)

i − η

Q

∑
j

φ j�
(n)
i j u(n)

i j a(n)
i , (34)

W (n)
i j → W (n)

i j − η

Q

∑
k

φk�
(n)
ik a(n)

i u(n)
ik x (n−1)

jk , (35)

a(n)
i → a(n)

i − η

Q

∑
j

φ j�
(n)
i j u(n)

i j

(
b(n)

i +
∑

k

W (n)
ik x (n−1)

k j

)
. (36)

For the CRBM learning rules (eqs 27–29), we simply make use of
a weighted mean, so that

〈χ〉 =
∑

i φiχi∑
i φi

. (37)

The most obvious choice of weighting is one derived from the
original trace amplitudes, although this may depend on the details
of the data set, and on the intended applications of the trained
autoencoder.

3.3.2 Adaptive learning rates

All learning rules presented in the previous section (eqs 21–23;
27–29; 34–36) feature a learning rate parameter, η. In general, there
is no requirement for η to take the same numerical value in all cases;
it may prove desirable to encourage the system to adjust one class
of parameters more rapidly than another. The purpose of η is to
control the size of the step the algorithm makes at each iteration. If
too small a step is taken, progress towards convergence may be very
slow; too large a step may prevent the system exhibiting convergent
behaviour at all. We therefore wish to find an optimum learning
rate, that balances these two considerations.

This is particularly relevant for the autoencoder training stage,
where the learning rules are derived from the local gradient of the
error function (eq. 17). Because we use only first-order derivatives,
we are essentially making a linear approximation to the error func-
tion, and η must therefore be small enough that this is valid. The
controlling factor is thus the local curvature of the error function,
which may vary as training progresses. This can cause problems:
a network that has been learning successfully for several hundred
iterations may encounter a region of greater local curvature, leading
to rapid divergence. One solution, of course, is to always use an ex-
tremely low value of η; however, the increase in training time makes
this impractical. Our approach is unsophisticated, but straightfor-
ward. We make the transformation

η → η0 + i

I
(η − η0) , (38)

where η0 represents the minimum learning rate to be used, and η

now specifies the maximum learning rate. Initially, i is zero, and is
incremented by one on each iteration that leads to a reduction in
the error as defined by eq. (17), up to a maximum value of I . If an
iteration increases the error according to that measure, we halve i.
We find this is usually sufficient to allow the training algorithm to
stabilize; however, we also monitor the frequency with which such
action is necessary, in order to identify cases where η is set too high.
With appropriate choices for the various parameters, this approach
allows us to achieve a reasonable balance between the competing
requirements of speed and convergence.

3.3.3 Initialization and typical settings

Before training commences, all network or CRBM parameters must
be randomized, to allow individual neurons to focus on different
aspects of the data set. Typically, we choose

w
v,h
i j = G(0, 0.01) ; bv,h

i = G(0, 0.01) ; av,h
i = 1 , (39)

where, again, G(μ, σ ) represents a random sample drawn from a
Gaussian distribution. There is no great significance to the values
chosen. However, because the weights are used to generate the ar-
gument of an exponential function, overflow errors may be encoun-
tered if the typical magnitude of these are too large. The standard
deviation of the distribution used in initialization must be chosen
with this in mind.

As a guideline, we use learning rates in the range 0.1 � η � 0.3,
and we typically use η0 = 0.01. Similarly, we find that I ≈ 100 in eq.
(38) leads to satisfactory behaviour. However, as we have already
suggested, appropriate values for the learning rate depend on the
detail of the data sets in use; as a result, some trial and error may be
required.

4 D E M O N S T R AT I O N

To demonstrate the power of autoencoder networks in conjunction
with seismic data, we begin with a quite general example, using
long-period surface wave data. From an initial data set contain-
ing seismograms recorded by the IRIS/IDA global networks for all
events with magnitude MW ≥ 6.5 in 2000, we extract 6000 traces
at random, with the restriction that the source-receiver epicentral
distance should lie in the range 40◦ ≤ θE ≤ 140◦. These are fil-
tered to enhance the surface waves (cosine bandpass filter, corner
frequencies 1.0 mHz, 2.0 mHz, 6.7 mHz, 7.4 mHz), and inspected
visually to discard poor quality traces. The result is around 1700
waveforms judged to be of high quality; from these we form a 1000-
element ‘training set’, and a 500-element ‘monitoring set’. Some
brief statistics concerning the composition of these can be seen in
Fig. 6. Caveats concerning the creation of a ‘visually clean’ data set
were discussed in Valentine & Woodhouse (2010), and they apply
equally here: principally, that not all classes of ‘error’ in seismic
data may be detected by a simple visual inspection, and that any
such classification is inherently a subjective process.

The highest frequency component retained in the data after filter-
ing has period T = 135 s. Following Nyquist (1928), a full reproduc-
tion of this signal requires it to be sampled at least once every 67.5 s.
Given an original sampling rate of 1 Hz and taking into account the
efficiency of power-of-two downsampling strategies (e.g. Cooley &
Tukey 1965), we convert our data set to a sampling frequency of
62.5 mHz—one sample every 16 s. Each trace is truncated after 512
data points—equivalent to just over 2 hr of seismic data per record,
beginning at the event time. In consequence, our data set is sampled
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Figure 6. Composition of data sets. Histograms showing make-up of training (solid black bars) and monitoring (red outline) data sets, by orientation, event
depth, epicentral distance and maximum trace amplitude. Visually good-quality data sets were derived from random samples of seismograms from all events
of MW > 6.5 in 2000. Typically, we find horizontal-component traces to have a lower signal-to-noise ratio than vertical components, explaining the apparent
over-representation of the latter in the data sets. Note that all traces are normalized to have unit maximum amplitude before network training.

roughly four times more densely than necessary on purely spectral
grounds. All traces are scaled by their maximum amplitude, so that
the data lies in the range [−1, 1].

We use this data set to create a 512-256-128-64-32-64-128-
256-512 autoencoder. This represents a compression ratio of 16×
compared to the original data, 4× better than expected based on
Nyquist’s theorem. Our decision that the number of nodes in adja-
cent layers should be related by a factor of two is based on expe-
rience; a broad justification for this can be made on the basis that
the logistic function behaves as a (fuzzy) binary switch. For this
example, we initialize all weights as set out in eq. (39), and have a
CRBM learning rate η(C) = 0.3; the maximum autoencoder learning
rate is η

(A)
0 = 0.1. For the time being, we choose not to introduce

any noise during training of either CRBM or autoencoder.
We begin by generating four CRBMs, and training each of these

for 500 iterations; these are used to assemble an autoencoder and
a further 2500 iterations of training are conducted: at this point,
the reconstruction error for the monitoring data set has ceased to
change significantly. Once training is complete, we use the network
to encode the 500-element monitoring data set; some examples of
waveforms and their corresponding encodings can be seen in Fig. 7.
These may then be decoded, and compared with the original traces
to assess the success of the autoencoder representation. To quantify
the error, we make use of the same error function used during
network training, eq. (5), computed on a per-trace basis.

Histograms showing the distribution of errors across the training
and monitoring data sets may be seen in Fig. 8, and some examples
of input and recovered waveforms—best, worst and intermediate—
can be found in Fig. 9. Overall, results are promising: the majority
of waveforms appear to pass through the encoder–decoder process
relatively unchanged, and errors are the result of small alterations
throughout the trace, rather than large, concentrated anomalies. A
relatively small number of traces are found to have larger error val-
ues, and it appears that these typically arise from the loss of some
particular wave packet in the original data. Notably, the network
demonstrated here appears not to be recovering large-amplitude
signals at the very beginning of the waveform: this arises because
such signals occur rarely in our training data set. This highlights the
potential for the the autoencoder to be used as a ‘novelty detector’—
features that are not characteristic of the training data set will tend
to be poorly recovered after encoding. Depending on circumstance,
a seismologist might wish to use this information to discard anoma-
lous data, or target ‘interesting’ signals for further investigation. We
provide a more concrete example of this at the end of the current
paper.

Fig. 10 shows histograms of the elements of W(n), b(n) and a(n)

from eq. (14), on a layer-by-layer basis, for our trained autoencoder.

Overall, we find that the weights and biases are distributed around
zero, as we expect. It is interesting to note that layer 5, the first
‘decoder’ layer, has both a larger range of values of weights than
most other layers, and a sensitivity that is almost double than that
found in the ‘encoder’ layers. The effect of this is to make it more
likely that the outputs from this layer will be close to saturated.

4.1 The encoding domain

As can be inferred from Section 3, the mapping between encoding
and waveform is non-linear, and developing any intuition for its be-
haviour is not straightforward. To provide some appreciation for the
behaviour of the network, Fig. 11 shows the waveforms generated
from the unit encodings x(L/2) = (1, 0, 0, . . .), x(L/2) = (0, 1, 0, . . .),
etc. We observe that the resulting traces could themselves be plausi-
bly classified as seismograms; each element of the encoding clearly
contains information from throughout the seismogram, and there is
no temporal localization. The aforementioned inability to represent
signals at the very start of a trace may also be clearly seen.

In Fig. 12, we show the 32 × 32 inner product matrix

Mi j = xi · x j

xi · xi
, (40)

computed using the waveforms from Fig. 11. We observe that these
32 waveforms are relatively close to forming an orthogonal set.
By construction, the unit encodings are orthogonal, and these rela-
tionships are approximately preserved during the decoding process.
This is indicative of a ‘well behaved’ transformation, with the depar-
ture from true orthogonality indicative of the degree of compression
within the system.

4.2 Stability

Under these circumstances, we should consider two (related) ques-
tions. First, how stable is the encoder–decoder pair with respect to
small perturbations to the inputs? A minor noise level variation in
an input seismogram should not result in its appearance changing
markedly after passing through the network. Following on from this:
if two seismograms are ‘close’ in the time domain, are they simi-
larly ‘close’ in the encoding domain? This question is significant,
because one potential application of the autoencoder method lies
in the reduction of the dimension of the data space for non-linear
tomographic inversions (e.g. Snieder 1998; Meier et al. 2007). Typ-
ically, such methods are extremely computationally intensive, and
any possibility of reducing data set volume may be beneficial.

The first may be approached by considering the derivatives of
output layer with respect to input layer. Following eq. (A11), we can

C© 2012 The Authors, GJI, 189, 1183–1202

Geophysical Journal International C© 2012 RAS



1192 A. P. Valentine and J. Trampert

Figure 7. Examples of encodings. Waveforms from the monitoring data set and their encoding using a trained autoencoder. As there is no inherent temporal
relationship between the elements of each encoding, we represent them in grid form; red colours represent positive numbers, and blues are negative. The colour
scale is equivalent to that shown in Fig. 12.
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Figure 8. Errors in recovery of original traces from encoding. Histogram
showing trace-by-trace error computed according to eq. (5) for training
(solid black bars) and monitoring (red outline) data sets. Some examples
from the monitoring data set can be found in Fig. 9, to allow error levels to
be related to waveform discrepancies.

define the matrix D(n) such that

D(n)
i j = ∂x (n)

i

∂x (n−1)
j

, (41)

D(n) = a(n) ∗ u(n) ∗ W(n) . (42)

From the chain rule, we then see that if we choose to define D to
represent the derivative of outputs with respect to inputs,

Di j = ∂x (L)
i

∂x (0)
j

, (43)

D = D(L)D(L−1) · · · D(1) . (44)

Thus, D can be computed straightforwardly for any given input
vector x(0) (as u depends on x). Ideally, of course, we wish the result
to be close to an identity matrix.

Three examples of D are shown in Fig. 13. In all cases, we see
that sensitivity is concentrated close to the diagonal: that is, an
infinitesimal change in some point of the input seismogram leads
to infinitesimal changes in some small region close to the corre-
sponding point in the reconstructed seismogram. Some ‘blurring’
is perhaps to be expected given the compression in the system;
furthermore, the relationship between adjacent points is an impor-
tant feature of seismic data, and it is unsurprising that the network
displays evidence of such connections.

To answer the second question, we must begin by defining a mea-
sure of ‘closeness’ of two vectors; we continue to use that used
during network training, eq. (5). We generate waveforms close to
members of the monitoring data set by the addition of random
noise, and encode these using the trained autoencoder. We can then
compare the error between original waveforms to that between the
encodings; some results are shown in Fig. 14. Again, the wave-
form difference associated with a given error can be understood,
qualitatively, from Fig. 9. There is a clear relationship: the distance
between two encodings varies linearly with the distance between
the original waveforms, so that any change that acts to bring two
encodings closer together also brings the corresponding waveforms
into agreement. This is an important and promising result for tomo-
graphic applications.

4.3 Variations

The preceding sections have focussed on a particular autoencoder,
and certain choices of the various parameters that control network
behaviour. Indeed, it is worth noting that because the network initial-
ization is random, the course taken during training will vary between
networks trained on the same data set with the same choices. The
end results may not be numerically identical, and we would not
expect two distinct networks to yield the same encoding for a given
waveform. Nevertheless, the general properties and characteristics
set out in the previous section are robust, and routinely emerge
during network training. We emphasize that although training has a
stochastic component, the operation of the trained encoder–decoder
system is deterministic.

4.3.1 Learning rates and noise

In Fig. 15, we show the iteration-by-iteration evolution of the er-
ror function (eq. 17) during autoencoder training for a number of
different choices of learning rate and noise level in both CRBM
and autoencoder training phases. In the main, the behaviour is intu-
itive, although it is important to distinguish between the effects on
training and monitoring data sets. Parts (a) and (b) show the effect
of altering the CRBM and autoencoder learning rates; as expected,
a greater learning rate leads to a more rapid reduction in training
data set error. However, these also illustrate the phenomenon of
‘overfitting’—at some point during training, the network starts to
learn the intricacies of the training data set, at the expense of its
ability to represent unseen examples. To prevent this, we can inject
noise into the data set during training.

Parts (c) and (d) show the effects, at the autoencoder stage, of
having introduced noise during CRBM training. Clearly, the CRBM
noise is beneficial to the autoencoder’s ability to learn the detail
of the training set, presumably by promoting a more complete
exploration of the parameter space, but seems not to impact sig-
nificantly on the ability to represent the monitoring data set. In the
light of what we shall see in (e), (d) repeats (c) with a lower learn-
ing rate but more training iterations; however, the consequences are
limited.

Parts (e) and (f) show the effects of introducing noise during
autoencoder training. The training set errors are increased, because
the noise now contributes; however, in (e) we see that the training
process has become unstable. This can be fixed, as in (f), by reducing
the overall learning rate; this limits the influence stochastic effects
can have on the network. The principal benefit of noise during
autoencoder training is as a form of regularization (see, e.g. Bishop
1995): it acts to desensitize the network to small-scale features
within the training set, and prevents these being ‘learned’ at the
expense of an ability to represent more general data sets.

Perhaps the general conclusion to draw from Fig. 15 is that au-
toencoder training is relatively stable for sensible choices of the
various parameters controlling the algorithm. The introduction of
some noise, at least during autoencoder training, appears beneficial,
although this may require lower learning rates than would otherwise
be possible. We note that the manner in which noise is introduced
differs between CRBM and autoencoder training, so that a direct
comparison of numerical values of σ in each case is not useful. In-
deed, appropriate noise levels may well vary between data sets and,
perhaps, intended uses for the encodings. As a result, an analysis
of appropriate parameters should be undertaken when setting up an
autoencoder problem.
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Figure 9. Demonstration: original and decoded traces. 512-point seismograms (black) from the ‘monitoring’ data set encoded to 32-element representations,
and then recovered (red). Blue lines show difference between input and recovered traces; all are plotted using the same vertical and horizontal scales. The
recovery error is quantified according to eq. (5); the best (left column) and worst (right column) examples are shown, along with a random selection from the
remainder of the data set.

4.3.2 Compression ratios

In the examples presented here, we have used a compression ratio
of 16x (512 → 32) against the raw data, around 4x better than
achievable by sampling the traces at their Nyquist frequency. In

principle, it would be instructive to explore the extent to which
seismic data can be compressed, and how recovery error trades off
against compression ratio. However, to do so in a robust manner
is complex, because any change in the number of encoding-layer
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Figure 10. Weights, biases and sensitivities of trained autoencoder. His-
tograms showing distribution of values of elements of W(n), b(n) and a(n)

(as defined in eq. 14) for a trained autoencoder. All histograms in a given
column share the same horizontal and vertical scales. Note that the number
of elements varies between layers.

nodes entails significant changes to the overall network architecture,
raising questions about the comparability of results.

Halving or doubling the compression ratio can, in principle, be
achieved by altering the number of layers in the network. However,
this may affect the complexity of the mapping representable by
the network (in extremis, consider reducing the network to contain
only one layer in encoder and decoder), so that any observed ef-
fects are not attributable only to changes in compression. Similarly,
changes effected by simply adding or removing nodes within the
existing layers alter the ‘factor of two’ relationship, which we have
suggested may be appropriate in conjunction with logistic neurons.
Such effects must be considered as part of any study of seismo-
gram compressibility, and are beyond the scope of the current work.
Nevertheless, we suggest that such a study may well be worthwhile,

because it could throw much light on the information content of
seismic data, with implications for studies of the seismic source,
and of earth structure.

4.3.3 Network architecture

We have, of course, only made use of a single network architecture:
the structure set out in Section 3 can be altered in many different
ways. In particular, neurons with different properties may be used,
and there is no a priori requirement for all neurons in the network
to be of the same type. Equally, there are many alternative choices
of error function (eq. 17), which would alter the training behaviour
of the network. We have not explored these possibilities, and do not
claim that the formulation set out here is the only—or best—means
of implementing autoencoders for seismic data.

4.3.4 Data

Similarly, we have made use of only a single-data type for our
examples. However, there is no reason why the method should not
be applicable to any seismic data set—although, as alluded to earlier,
it is likely that the compressibility of data sets will differ, according
to the complexity and range of signals to be be represented. It is
also likely that different classes of data may require different choices
of parameters: the learning of more complex data sets might, for
example, be aided by a lower learning rate. We reiterate our previous
comment, that such effects should be explored on a per-case basis.

5 D I S C U S S I O N A N D A P P L I C AT I O N S

The autoencoder method set out and demonstrated here ap-
pears to provide a powerful technique for discovering lower-
dimensional structure within complex waveform data sets. The
lower-dimensional representations appear to behave ‘well’, as dis-
cussed in the previous section: the evidence presented here seems
to suggest that analysis typically conducted in the time domain may
be equally possible in the encoding domain. Of course, the benefits
and drawbacks of such a transformation must be assessed in the
context of each particular case.

The behaviour of an autoencoder network is strongly dependent
on the training data set used, because this implicitly defines S

N , and
an appropriate choice for this may be instrumental in the success or
failure of any given situation. It is important to bear in mind that the
network can only properly be used in conjunction with waveforms
that meet whatever selection criteria—both explicit, and implicit—
were used for the training set. By way of illustration: we might
expect to be able to represent seismograms from some local seismic
array tolerably using a network trained using data from around the
globe. However, we would not expect to be able to represent global
data sets using a network trained using data from a particular array.
Conversely, the more we can restrict the training set, the better
results are likely to be: for a given compression ratio, seismograms
from the array are likely to be better represented by a network trained
only for that array than by a similar network trained globally.

As stated in the introduction, we do not foresee the autoencoder
finding common use for the compression of seismic data for storage
or transmission. As we have seen, recovery is not perfect—although
we suggest that where seismograms contain moderate amounts of
noise, the recovered trace might be as plausible a representation
of the true ground motion as the original—and modern advances
in digital storage technology make the need for compression less

C© 2012 The Authors, GJI, 189, 1183–1202

Geophysical Journal International C© 2012 RAS



1196 A. P. Valentine and J. Trampert

Figure 11. Waveforms corresponding to unit encodings. 32 waveforms obtained by decoding the unit vectors x(L/2) = (1, 0, . . . , 0), x(L/2) = (0, 1, . . . , 0),
etc. We observe that each element of the encoding affects the entire length of seismogram.

pressing. Instead, we foresee three broad categories of application
for the autoencoder method: as a technique for analysing waveform
data, and the information contained therein; as a means of reducing
data set dimension, so that encodings are used as a direct proxy for

the waveforms themselves and as a practical tool for the manage-
ment of extremely large data sets. Of course, the boundaries between
these classes are not always clear-cut, and some applications may
not fit neatly into one particular category.
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Figure 12. Orthogonal encodings produce (almost) orthogonal decodings.
Inner product matrix M (as in eq. 40) formed from the 32 waveforms shown
in Fig. 11. Clearly, these are close to forming an orthogonal set.

5.1 Analysis of waveforms

Clearly, the autoencoder assimilates information about the fea-
tures present within individual waveforms, and their relationships
with one another. Further, the relative compressibilities of different
classes of data is related to the relative information content—in
a mathematical sense—of those classes. As a result, it should be
possible to use autoencoders to develop a greater understanding of
how the various parts of a waveform are linked, with attendant ben-
efits for studies that make use of full-waveform data: we may gain
a greater understanding of how to enhance sensitivity to particular
aspect of earth structure or source mechanism.

In a similar vein, we should consider the significance of the
‘basis’ waveforms discovered by the network, such as those shown
in Fig. 11. If these do contain some underlying information about the
overall structure of the waveforms in our data set, it may be possible
to use these in conjunction with classical methods of filter design
to improve tomographic resolution. Clearly, such possibilities have

Figure 14. Waveforms that are ‘close’ have encodings that are ‘close’. Plot
of error between two waveforms against error between the corresponding
encodings, defined as in eq. (5). For the interpretation of a given error in
terms of waveform discrepancies, see Fig. 9.

not been proven on the basis of the current work, but merit further
exploration.

5.2 Operations on encoded waveforms

In general, seismic data is used to draw inferences—about sources,
earth structure or both. Given that the encodings themselves are
sufficient to allow the reconstruction of the original waveforms, it
is, in principle, possible to analyse such problems in the encoding
domain. This may be desireable if it either enhances sensitivity,
or reduces computation time. The former may arise because some
system decouples in the encoding domain; the latter will typically
simply exploit the reduction in the number of parameters to be
handled.

As mentioned above, we envisage this being particularly sig-
nificant for non-linear tomographic studies using neural networks.
Such approaches are currently in their infancy, but would typically
involve training a neural network to associate earth model parame-
ters with synthetic waveforms computed in that model. In principle,

Figure 13. Derivatives of network outputs with respect to network inputs. Plots of the matrix D (eq. 43) corresponding to three different seismograms (as
shown). In all cases, off-diagonal elements of D are close to zero, so that there is a strong localization of sensitivity within the network—a small change to
the input seismogram at time t may be reflected in the output seismogram in some region close to time t, but has negligible impact far from this. Matrices are
normalized by their maximum element.
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Figure 15. Effect of learning rate and noise on training. Iteration-by-iteration change in overall error (as in eq. 17) during 5000 iterations of autoencoder
training, for training data set (solid lines) and monitoring data set (dashed). (a) and (b): Increasing learning rate causes error to decrease more rapidly; (c) and
(d): Noise in CRBM training improves representation of training set, but not generalization; (e) and (f): Noise in autoencoder training prevents overfitting of
training set, but introduces instabilities. For more complete description, see main text. Where not otherwise specified, parameters were based on those in the

‘demonstration’ (Section 4): learning rates η(C) = 0.3 and η
(A)
0 = 0.1; noise levels σ (C) = 0.0 and σ (A) = 0.0 (i.e. no noise), number of training iterations

T (C) = 500 and T (A) = 5000.

the parameters of the real Earth can then be inferred from recorded
data. However, as will be appreciated from the networks discussed
in this paper, the number of weights required to specify such a net-
work will grow rapidly with the number of waveform parameters
to be represented. Thus, even a moderate reduction in this can have
important consequences for the tractabilty of such inversions.

It may also be possible to use encodings to detect particular fea-
tures, or search for given occurrences in waveform catalogues. In
principle, such features might have a better-defined signature in the
encoding domain than in the time domain; once this is identified, it

is straightforward to construct a classifier that determines whether
individual seismograms are likely to contain the feature. Such ap-
plications are likely to make use of a modified error function during
network training, to promote and enhance the desired effects.

5.3 Automated handling of large data sets

One of the key challenges in modern seismic studies is the sheer
quantity of data that must be handled. Typically, raw data sets contain
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Figure 16. Reconstruction error as a measure of waveform quality. An autoencoder trained on a data set of hand-picked, high-quality surface wave seismograms
is used to encode and reconstruct similar seismograms in a previously unseen data set. The reconstruction error, computed according to eq. (5), provides a
measure of how well each trace conforms to the characteristics of the training set. We present a random sample of waveforms (black) and their reconstructions
(red), sorted according to reconstruction error. There is a clear correlation between visual quality, and the ability of the network to recover the original trace.
Poor quality traces can therefore be removed from the data set by discarding those over some reconstruction threshold—see Fig. 17.

a wide variety of flaws—noise, recording glitches, instrument errors
and so forth. Some of these may be detected and eliminated by rule-
based methods; however, in many cases, there is little alternative to
a visual inspection of all waveforms. Such an approach is extremely

time-consuming, and limits the size of data set that can feasibly be
used.

In recent years, some attempt has been made to construct sys-
tems that may introduce a degree of automation to this process (e.g.
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Maggi et al. 2009; Valentine & Woodhouse 2010). Autoencoders
provide a new approach to such problems, through the ‘test for
membership of S

N ’ set out in Section 2.3. A trained autoencoder
may be used to separate waveforms that share the general charac-
teristics of its training set from those that do not. Thus, the network
can be used to ‘bootstrap’ data selection tasks: given a large data set
to classify, we need to only perform visual assessment of a subset,
upon which a network can be trained. This can then be used to
extend the operator’s selection across the entire data set.

We demonstrate this concept by using the autoencoder to identify
a ‘visually good’ subset amongst a surface wave data set. This task
is similar to that considered in Valentine & Woodhouse (2010), and
much of the discussion of the goals and pitfalls of automation within
that paper will also apply here. As already stated, the autoencoder
demonstrated in Section 4 was trained on a hand-picked set of 1000
high-quality surface wave seismograms. As a result, the data space
S

N for this autoencoder approximates the set of all ideal 512-point
surface wave seismograms, and the reconstruction error provides a
measure of how well a given waveform fits the characteristics of
this set.

A further 1000 seismograms—previously unseen by the network
but conforming to the selection criteria used for the training set
(see Section 4)—are encoded and reconstructed. Some examples of
waveforms selected at random from this set are shown in Fig. 16,
along with their reconstructions and associated numerical error. As
expected, we see that all reconstructions lie within S

′N , and have the
general characteristics of surface wave seismograms; furthermore,
we see that the reconstruction error correlates well with the ‘visual
quality’ of the original trace.

A basic selection algorithm to exploit this involves defining some
threshold reconstruction error, Ethresh, used to determine whether a
trace is sufficiently similar to S

N to be retained. To assess the per-
formance of such an approach, we visually assess each of the 1000
seismograms used here as ‘good’ or ‘bad’, without prior knowledge
of the reconstruction error. We then plot trade-off curves, as shown
in Fig. 17, depicting the percentage of ‘visually bad’ traces removed
from the data set as Ethresh is increased, along with the percentage
of desirable traces lost. We find that performance is reasonable: in
this example, virtually all ‘bad’ traces can be removed at a cost of
around 40 per cent of the good traces; alternatively, 90 per cent of
good traces may be retained if we also accept that the data set may
contain about 10 per cent of the ‘visually bad’ waveforms.

We have therefore succeeded in extrapolating our classification of
one data set onto another. Of course, performance is not perfect, and
further development would be required before any practical imple-
mentation of this concept: other measures of similarity might yield
better results, and it would be important to develop tools for mon-
itoring performance, to ensure that any material misclassifications
are detected. However, this offers a powerful method for handling
large data sets automatically. We emphasize that this method ex-
tends beyond simple quality assessment—the approach might be
adaptable to isolate particular phase arrivals within a catalogue, for
example.

Importantly, the assessment process is fast: with a trained net-
work, processing rates of hundreds or thousands of waveforms per
second are easily achieved using a standard workstation. However,
generating a new autoencoder is relatively costly—for the networks
presented in this paper, a training time of 1–2 hr is typical—with
requirements scaling according to the size of training data set, and
the total number of weights in the network. This overhead cost must
be considered when assessing the viability of a network-based ap-
proach to classification: where the data set to be classified is small,

Figure 17. The autoencoder as a tool for quality assessment. An autoen-
coder was trained on a visually ‘good’ data set, and then applied to a new data
set containing 1000 traces visually assessed as either ‘good’ or ‘bad’. We
adopt a strategy of discarding all traces for which the reconstruction error, Ei,
exceeds a threshold Ethresh. As Ethresh is increased, we remove progressively
more of the ‘bad’ traces, at the expense of some ‘good’ waveforms.

automation may lead to an increase in the total time required. How-
ever, for handling large waveform databases, the time saving is
likely to be substantial. An automated method is also well suited
to problems where real-time classification is necessary, or where
the ability to reproduce a selection process at some later date is
desirable, perhaps as new data become available.

5.4 Concluding remarks

The applications suggested here are not exhaustive, and neither is
our exploration of the properties of autoencoder networks. We do
not suggest that the network architecture and training algorithms
presented here are optimal; in any case, the definition of ‘optimal’
is likely to vary according to the precise problem being considered.
Changes in network topology, the use of different neuron func-
tions and alterations to the measure of reconstruction error that is
minimized during training will all affect the performance of the
autoencoder, and its ability to represent a given data set in fewer
dimensions. However, our experience suggests that it is not difficult
to obtain satisfactory results, and that the effects of such param-
eters are less significant than might be supposed. We believe that
autoencoders show great promise for a wide range of geophysical
applications—although our focus has been purely seismological,
the method applies equally to any data set where apparent complex-
ity may belie a simple representation. We therefore hope that it may
allow greater insight into data sets, and thus into the Earth.
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A P P E N D I X A : T H E AU T O E N C O D E R
T R A I N I N G A L G O R I T H M

Here, we derive the network training rules, as set out in eqs
(21)–(23). The back-propagation algorithm is discussed in detail in
most textbooks covering neural networks—see, for example, Bishop
(1995). According to eq. (14), the layer-by-layer operation of the
network can be described by

x(n) = f
(
a(n) ∗ b(n) + a(n) ∗ (

W(n)x(n−1)
))

, (A1)

or, equivalently

x (n)
i j = f

(
a(n)

i b(n)
i + a(n)

i

∑
k

W (n)
ik x (n−1)

k j

)
, (A2)

where the summation index k runs over the K(n−1) neurons in the
(n − 1)th layer and the activation function, f (x), is as defined in
eq. (12). We can therefore compute a variety of partial derivatives,
viz.

∂x (n)
i j

∂b(n)
λ

= 1
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i

(
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) (
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)
δiλ , (A3)
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∂x (n)
i j

∂x (n−1)
λμ

= 1

f1 − f0

(
x (n)

i j − f0

) (
f1 − x (n)

i j

)
a(n)

i W (n)
iλ δ jμ , (A6)

with δij representing the Kronecker Delta.
We wish to minimize the error function

E = 1

2Q

∑
i, j

(
x (L)

i j − x (0)
i j

)2
, (A7)
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as defined in eq. (17), by adjusting the various a(n)
i , b(n)

i and W (n)
i j

parameters. We therefore seek the partial derivatives of E with
respect to these. Because the network treats each example in the
data set independently, the chain rule for partial derivatives allows
us to write

∂x (n)
i j

∂x (n−m)
μν

=
∑

α,β,...,λ

∂x (n)
i j

∂x (n−1)
αν

∂x (n−1)
αν

∂x (n−2)
βν

· · · ∂x (n−m+1)
λν

∂x (n−m)
μν

δ jν , (A8)

with summation running over all neurons in the appropriate layer.
This leads us to

∂ E

∂b(n)
μ

= 1

Q

∑
j,α,β,...,λ
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x (L)

α j − x (0)
α j

) ∂x (L)
α j
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β j

· · · ∂x (n+1)
κ j

∂x (n)
λ j

∂x (n)
λ j

∂b(n)
μ

. (A9)

Expressions for the partial derivatives with respect to a(n)
μ and W (n)

λμ

are similar.
In order to maximize computational efficiency, we wish to cast

these equation in terms of matrix operations. As in eq. (20), we
define the matrix u(n) as having elements

u(n)
i j = 1

f1 − f0

(
x (n)

i j − f0

) (
f1 − x (n)

i j

)
. (A10)

This allows us to rewrite eq. (A6) as

∂x (n)
i j

∂x (n−1)
λμ

= u(n)
i j a(n)

i W (n)
iλ δ jμ . (A11)

Based on eq. (A9), we also define the quantity �(n)
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�
(L)
i j = x (L)

i j − x (0)
i j ; (A13)

or, in matrix form,

�(n−1) = W(n)T (
�(n) ∗ u(n) ∗ a(n)

)
(A14)

�(L) = x(L) − x(0) , (A15)

as given in eqs (18)–(19). These terms may be interpreted as
the difference between network outputs and inputs being ‘back-
propagated’ through the network, to provide a measure of the effec-
tive error in the values computed for intermediate layers. We can
now write

∂ E
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i j

∂x (n)
i j

∂b(n)
μ

(A16)

= 1

Q

∑
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�
(n)
μj u(n)

μj a(n)
μ , (A17)

where we have made use of eq. (A5). Similar expressions may
be derived for the partial derivatives with respect to a(n)

μ and

W (n)
λμ .
We therefore find that the overall error in the network, eq. (17),

should be reduced by making the updates
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i − η
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)
, (A20)

as given in eqs (21)–(23). Note that all updates are made
simultaneously—that is, all updates are computed using the val-
ues of parameters prior to the update stage. Once the update has
been made, the network calculates new values for the x(n) accord-
ing to eq. (14), and the entire process is repeated until convergence
is reached (as described in the main text).The ‘learning rate’, η is
a small positive constant: clearly, there is a trade-off between the
stability of the training algorithm, and the amount of time taken to
reach a solution.
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