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A B S T R A C T   

Interpretation of information available from seismic data in terms of temperature and composition requires an 
understanding of the physical properties of minerals, in particular, the elastic properties of candidate Earth 
minerals at the relevant (here, lower mantle) pressure and temperature. A common practice for the bulk elastic 
properties is to measure volume at a range of pressures and temperatures using experiments or computational 
methods. These datasets are then typically fit to a pre-determined functional form, or equation of state to allow 
computation of elastic properties at any other pressure or temperature. However, errors, both random and 
systematic, limitations in the number of data and choice of pressure marker and scale, as well as different 
functional forms of equations of state, all contribute to the uncertainties in mineral seismic properties. In an 
attempt to present a more comprehensive view of these uncertainties, we use neural-network based techniques to 
infer the relationship among: pressure, temperature, volume, bulk modulus, and thermal expansivity of MgO. We 
illustrate our approach on experimental data, but an extension to ab initio data is straightforward. The type of 
neural network used is called a Mixture Density Network (MDN) which is a combination of a conventional feed- 
forward neural network and a mixture model that consists of Gaussian functions. MDNs are capable of 
approximating arbitrary probability density functions, which allows us to compute the uncertainties in the 
predicted equations of state. Since the networks interpolate locally between input samples, pressure-volume- 
temperature relations are implicitly learned from data without imposing any explicit thermodynamic assump-
tions or ad-hoc relationships. We use the partial derivatives of the mapping between inputs (pressure and 
temperature) and output (volume) to compute the isothermal bulk modulus and thermal expansivity. Flexibility 
of the MDNs allows us to investigate the uncertainty due to certain data in one region of pressure-temperature 
space without influencing the posterior probability density everywhere. In general, we find that the elastic 
properties of MgO are well-constrained by experimental data. However, our study highlights regions in which 
sparse or inconsistent data lead to poorly constrained elastic properties, namely: at low pressure and high 
temperature (<25 GPa and >1500 K), and temperatures above 2700 K. While the former conditions are likely 
not important for the Earth’s lower mantle, they are relevant in other planetary bodies such as the Moon and 
Mars. Comparison with conventional equation of state forms shows that assuming a certain functional form of the 
pressure-volume-temperature relationship leads to potential bias in uncertainty quantification, because the un-
certainties are then specific to the underlying form. In combination with data sets of other lower mantle minerals, 
this technique should improve uncertainty quantification in interpretations of seismic data.   

1. Introduction 

Information such as variation of wave speeds (e.g. Dziewonski and 
Anderson, 1981; Kennett et al., 1995), obtained by studying seismic data 
is crucial for understanding the internal structure of the Earth. Various 

studies have reported the presence of seismically distinct structures at 
multiple scales in the Earth’s mantle (e.g. Garnero and Helmberger, 
1998; Ritsema et al., 1999; Romanowicz, 2008; Hernlund and Houser, 
2008; Deschamps et al., 2012; Garnero et al., 2016). In order to relate 
those observed seismic structures to appropriate temperature and 
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composition, constraints from mineral physics on the sensitivity of 
seismic wave speeds to these parameters are required (e.g. Jackson, 
1998; Trampert et al., 2001). The sensitivities have been used to infer 
the probable existence of chemical heterogeneities within the mantle (e. 
g. Trampert et al., 2004; Dobrosavljevic et al., 2019; Jackson and 
Thomas, 2021). Other studies have tried to constrain the (average) 
mantle geotherm and composition by combining seismic data and 
mineral seismic properties (e.g. Cammarano et al., 2003, 2005a,b; 
Deschamps and Trampert, 2004; Stixrude and Lithgow-Bertelloni, 2005; 
Matas et al., 2007; Cobden et al., 2008, 2009; Simmons et al., 2010; 
Khan et al., 2009, 2011, 2013). Mantle convection simulations (e.g. 
Nakagawa et al., 2009, 2010, 2012; Schuberth et al., 2009, 2012) have 
also incorporated mineral properties to illustrate the importance of joint 
geodynamical-mineralogical approaches to explain the seismic anoma-
lies in the mantle. Mineral properties can be derived from experimental 
or theoretical methods. In particular, information on the density (or 
volume V), incompressibility and rigidity are required to obtain the 
seismic wave speeds in a material. Since it is not practical or feasible yet 
to perform experiments at each pressure (P) and temperature (T) that 
may exist within the Earth, the convention is to use equations of state 
(EOSs) to define the relationship among the thermodynamic variables P, 
V and T (e.g. Duffy and Wang, 1998), and hence be able to estimate 
mineral properties at the conditions not accessed by experiments. 

However, a number of uncertainties are associated with this pro-
cedure. Experimental measurements contain random and systematic 
errors. The choice of pressure scale as well as different functional forms 
of the EOS (e.g. Vinet EOS, third/fourth order finite strain equations, 
also called Birch-Murnaghan EOSs, as well as the choice of Grüneisen 
models) all contribute to the uncertainties in mineral seismic properties. 
As a result, it becomes challenging to determine realistic uncertainties 
for the interpretations which relate seismic observations to temperature 
and composition. 

In this study, we present an Artificial Neural Network (ANN) based 
approach to infer the pressure-volume-temperature (P-V-T) relationship 
of MgO, with a view to extend the application to other major lower 
mantle minerals. We collate experimental P-V-T data for MgO together 
with reported uncertainties, regardless of pressure scale or functional 
form used. By applying ANN techniques, P-V-T relationships are 
implicitly learned from data without any prior assumption on the 
functional form (or thermodynamic model) of the relationship. Specif-
ically, we use Mixture Density Networks to infer material properties and 
assess their uncertainties. We compute the partial derivatives of inferred 
volume with respect to pressure and temperature to extract the bulk 
modulus and thermal expansivity, respectively. In order to test the 
feasibility of this approach, we train the networks only on experimental 
data, although a combination of theoretical and experimental data is 
also possible and straightforward. 

2. Equations of state: uncertainties 

Experimental approaches (e.g. Vassiliou and Ahrens, 1981; Yoneda, 
1990; Utsumi et al., 1998; Duffy and Ahrens, 1995; Fei, 1999; Sinogeikin 
and Bass, 2000; Sinogeikin et al., 2000; Dewaele et al., 2000; Speziale 
et al., 2001; Li et al., 2006; Dorogokupets and Dewaele, 2007; Hirose 
et al., 2008; Murakami et al., 2009; Kono et al., 2010; Dorfman et al., 
2012; Ye et al., 2017) have been used to establish the P-V-T relationship 
of MgO. Experiments using a diamond anvil cell (DAC), a multi-anvil 
press (MAP) and shock compression have provided a huge number of 
data covering a wide range of pressure and temperature. Laboratory 
measurements of volume are done at a discrete set of pressure and 
temperature points. To cover the entire pressure and temperature range 
of lower mantle requires pressure extrapolation and/or interpolation of 
the measurements using a thermal equation of state. The most common 
procedure (e.g. Matas et al., 2007; Cobden et al., 2009) is to use an 
isothermal equation of state with a Mie-Grüneisen model for thermal 
pressure. In this approach, the total pressure is considered to be the sum 

of a static pressure and a quasiharmonic thermal pressure. The static 
pressure term describes the pressure-volume relationship at a reference 
temperature (usually 300 K). Different functional forms, such as 
third/fourth order finite strain and Vinet, have been widely used to 
model isothermal compression curves often leading to different esti-
mates of fitting parameters or ambient mineral properties such as vol-
ume (V0), bulk modulus (K0T) and pressure derivative of bulk modulus 
(K′

0T) at 0 GPa pressure (e.g. Speziale et al., 2001; Dorogokupets and 
Dewaele, 2007; Tange et al., 2009). To compute temperature effects 
(more precisely, thermal pressure) this framework uses a Grüneisen 
parameter whose volume dependence is uncertain (Ye et al., 2017). 
Although anharmonic effects are very small compared to the harmonic 
contribution to thermal pressure, some authors (e.g. Dorogokupets and 
Dewaele, 2007) use models to account for this term as well. 

Additionally, the exact determination of pressure using a reliable 
pressure scale in static high pressure and temperature experiments is 
still a challenging task. The ruby pressure scale of Forman et al. (1972) 
used in DAC experiments has been largely calibrated (Liu and Bi, 2016) 
using both static and dynamic compression data, but still suffers from 
large experimental uncertainties. Dynamic shock compression experi-
ments provide an absolute pressure scale. But the correction for thermal 
effects can be very uncertain (e.g. Dorfman et al., 2012; Duffy and Wang, 
1998), especially at high shock temperatures because the corresponding 
thermal contribution also increases. Other widely used pressure scales 
are gold, platinum and MgO scales. A recent study by Ye et al. (2017) 
shows the inter-comparison of those scales up to 140 GPa and 2500 K. 
They report ±1 to 4 GPa (sometimes systematic) differences in pressure 
among those pressure scales. Although their study optimized different 
Au, Pt and MgO pressure scales to make them agree within ±1 GPa, it 
concludes that the most preferred form of EOS (and the pressure stan-
dard itself) remains uncertain. 

Measurement errors, lack of an absolute pressure scale, and a variety 
of functional forms of EOSs all contribute to the uncertainties in mineral 
seismic properties. Assuming one particular EOS or pressure scale has 
the potential to produce biased uncertainty estimates that are specific to 
the underlying functional form. In this study we train neural networks to 
learn the implicit relation between pressure and temperature (as inputs) 
and volume, bulk modulus and thermal expansivity (as outputs). The 
results are entirely data-driven without a priori selection of experiments 
or a functional form to explain the data. In this way, we can infer the 
relative contributions of data sparsity versus prior conditioning to the 
uncertainties. We can also map the level of certainty of the elastic pa-
rameters in pressure-temperature space, which can be propagated into 
seismic interpretation. 

3. The Mixture Density Network (MDN) 

3.1. Background 

Conventional neural networks (Hornik et al., 1989) are general 
function approximators, which can be used to infer an (arbitrary 
nonlinear) relationship (Cybenko, 1989) between inputs and target-
s/outputs. However, the conditional average (i.e. the mean value of 
output conditioned on input data) given by such networks only provides 
limited information about that relationship (Bishop, 1994). Since 
experimental P-V-T data contain measurement errors, and inferring 
P-V-T relationship using those data is an inverse problem which can 
have multiple solutions, naturally we seek to treat the problem in a 
probabilistic framework. Hence, instead of having only the average 
volume output, we want to find the posterior probability density func-
tion (pdf) for volume. The pdf for volume at a given pressure and tem-
perature can be denoted as 

σ(V|P,T). (1) 

We can represent a general pdf by combining a conventional feed- 
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forward neural network with a Gaussian Mixture Model (GMM), which 
is then called a Mixture Density Network (MDN) (Bishop, 1994 and 
Bishop, 1995). The architecture of the MDN used in this study is shown 
in Fig. 1, and consists of a two layer feed-forward neural network and a 
GMM. The GMM contains a mixture of a finite number of Gaussian 
kernels which are then weighted to give the posterior pdf. The mean, 
standard deviation and weight of each Gaussian kernel are parameter-
ized by weights and biases of the feed-forward neural network, also 
known as network parameters (α). 

Application of MDNs in Earth Sciences ranges from inversion of 
surface wave data for global crustal thickness (Meier et al., 2007a,b), 
temperature and water content variations within the transition zone 
(Meier et al., 2009), inference of Earth’s radial seismic structure (de Wit 
et al., 2013), inversion of free oscillations (de Wit et al., 2014), con-
straints on lower mantle anisotropy (de Wit and Trampert, 2015), 
nonlinear petrophysical inversion (Shahraeeni and Curtis, 2011), source 
inversion of strong-motion data (Käufl et al., 2016b), inferring param-
eters governing mantle convection (Atkins et al., 2016) to travel-time 
tomography (Earp and Curtis, 2020). In our case, based on some 
experimental P-V-T data, we seek to approximate the true posterior pdf 
(Eq. (1)) by a parameterized posterior 

p(V|P,T;α) ≈ σ(V|P, T). (2) 

In other words, for a given pressure and temperature, the posterior 
probability density for volume is given by the pdf in expression (2) 
which is parameterized by the weights and biases (α) of the feed-forward 
neural network. These parameters are learned during the network 
training process (see Section 3.2). The posterior pdf (Eq. (2)) can be 
expressed as a linear combination of a fixed number of Gaussian kernels 

(also see Fig. 1) as 

p(V|P,T;α) =
∑M

n=1
πn(P,T;α)φn(V|P,T;α) (3)  

where M denotes the number of kernels used, and πn are mixing co-
efficients which satisfy 

∑M

n=1
πn(P, T;α) = 1. (4)  

If the number of Gaussian kernels is M, then the total number of outputs 
from the feed-forward network is K = 3M because each kernel is 
parameterized by its weight (πn), mean (μn) and standard deviation (σn). 
Eq. (4) ensures that the posterior integrates to 1 making it a valid 
probability density. φn in Eq. (3) are Gaussian kernels of the form 

φn(V|P,T;α) = 1
̅̅̅̅̅
2π

√
σn(P,T;α)

exp
{

−
(V − μn(P,T;α))

2

2σn(P,T;α)2

}

(5)  

where μn and σn are the mean and standard deviation of Gaussian kernels 
in the GMM. These parameters of the GMM are related to the outputs 
(yk) of the feed-forward network (see details in Appendix A). 

3.2. MDN initialization and training 

In order to find the appropriate weights and biases of the feed- 
forward neural network, we train the MDN using a sub-set of the 
experimental P-V-T data. In fact, the total experimental P-V-T data, 
shown in Fig. 2 (Fei, 1999; Jacobsen et al., 2008; Fei et al., 2004a; Fei 

Fig. 1. Architecture of the Mixture Density Network (MDN). A two layer feed-forward neural network (left) is combined with a GMM (centre) to get the posterior pdf 
(right). P & T denote the network inputs, hj are the hidden nodes, and yk are the outputs of feed-forward network. Indices J and K represent the number of hidden and 
output nodes, respectively. Except for the input nodes, each circle represents a computational node. Hidden layer nodes take a weighted sum (with weights αij, where 
i ∕= 0) of input data (P & T) plus a bias term (α0j) as inputs and apply a sigmoid activation function. The output layer nodes take a weighted sum (weighted by αjk, 
where j ∕= 0) of the outputs from the hidden layer plus a bias (α0k) and apply a linear activation function to give the outputs yk. These outputs are related to the mean, 
standard deviation and weight of each Gaussian in the GMM (see Appendix A for details). Each Gaussian in the GMM is then weighted to give the final posterior pdf. 
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et al., 2004b; Dewaele et al., 2000; Speziale et al., 2001; Utsumi et al., 
1998; Fiquet et al., 1999; Ye et al., 2017; Kono et al., 2010; Dorfman 
et al., 2012; Zhang, 2000; Fiquet et al., 1996; Dubrovinsky and Saxena, 
1997; Hirose et al., 2008; Litasov et al., 2005; Murakami et al., 2012; 
Sinogeikin and Bass, 2000; Li et al., 2006; Fan et al., 2019), is divided 
into three sets: training (70%), monitoring (20%) and test (10%) sets. 
During training, the MDN takes pressure and temperature from the 
training data and outputs a pdf for volume according to Eq. (3). How-
ever, we need to decide on the initial values of the network parameters 
of the feed-forward neural network to compute the first output. We 
randomly draw the input layer and hidden layer weights (Bishop, 1995) 
according to Gaussian distributions (see Appendix B for details). Once 
the MDN is initialized and training has started, the difference between 
the output and the target can be computed according to an error func-
tion defined in Appendix B. This function is also called the loss function 
which is minimized iteratively using the ADAM optimization method 
(see detailed algorithm in Kingma and Ba, 2014). We use TensorFlow 
(1.13.1) (Abadi et al., 2015) to construct, train and evaluate the MDN. 

Overfitting is a general property of the maximum likelihood tech-
nique (Bishop, 1995). We use a separate monitoring data set to monitor 
the error decay during training. We evaluate the monitoring set error at 
the end of each iteration; if the monitoring error starts to increase (i.e. 
the network starts to over-fit the training data) then we stop the training 
procedure and save the last best trained model. This technique is also 
called the early-stopping technique. 

It is known that the inverse problem can have multiple solutions (i.e. 
a range of network parameters can possibly provide equally likely so-
lutions). We train a number of independent MDNs, and combine them by 
a weighted sum (e.g. Käufl et al., 2016a). The weight of each network is 
based on how well it performs on the test data which is not used during 
training. The performance is measured by the same error function that 
we use to calculate training and monitoring errors (for details see Ap-
pendix B). In this way, the explicit dependence of the posterior on the 
network parameters can be avoided. The choice of the number of MDNs 
depends on the problem at hand. A rough estimate for a relatively simple 
problem (e.g. a few inputs and a target/output) may lie in the range 

10–20 (Käufl et al., 2016a). However, in order to compute the un-
certainties in bulk modulus and thermal expansivity (details in Section 
5) we train a large number of MDNs (103). The number of hidden nodes 
to use in each MDN are randomly selected from a pre-defined range 
which is 16–32. We conducted a separate test (not shown here) to find 
the range that provides the lowest errors for the test set. Similarly, we 
propagate the uncertainties in experimental data through the MDNs by 
randomly perturbing the thermodynamic variables within the reported 
uncertainty range. 

3.3. Network performance 

We use the test data set to examine how well the trained MDNs 
perform when a new datum is presented. Since the test data are not used 
in network training, we can use them to predict the output and subse-
quently compare with target data. In Fig. 3 (top panel) the predicted 
volume is compared with the target data. The MDNs predict pdfs for 
volume, and for this comparison we compute the conditional mean 
volume (conditioned on inputs P & T), instead of using the full posterior 
pdfs on volume, as 

< V|P,T;α >=
∑M

n=1
πn(P, T;α)μn(P, T;α). (6) 

This special case of MDN corresponds to the standard neural network 
output (Bishop, 1994), i.e. only the feed-forward network with one 
volume output. Eq. (6) shows the mean volume output for one MDN, and 
we calculate the weighted sum (weights are chosen according to the test 
set error as mentioned previously) of mean volumes from all MDNs. One 
alternative to the conditional posterior mean could be the posterior 
mode. However, the posterior mode may be biased towards certain 
pressure scales which contain relatively more data in the training set 
compared to other scales. 

In the region of high temperatures and low pressures (Fig. 3, top 
panel) the trained MDNs show lower resolving capacity, providing more 
uncertain volume predictions. We found that this discrepancy in 
network predictions comes from the inclusion of specific training data 
points (high temperature data of Fiquet et al., 1996) in those ranges. We 
note that Fiquet et al. (1996) did not include a thermal pressure term in 
their experiments and so it is likely that the total pressure is under-
estimated. Moreover, the reported temperatures are likely over-
estimated by about 20 to 50%. We trained another network excluding 
these data in our training set and access the prediction performance 
(Fig. 3, bottom panel). In doing so, MgO volumes are resolved within the 
prior range of experimental data, also in the region of low pressure and 
high temperature. This shows the networks’ ability to capture the un-
derlying data consistency. 

Low pressure data (approximately less than 30 GPa) are relatively 
dense up to about 1400 K compared to higher temperatures. Similarly, 
most of the high pressure data, i.e. extending to the lower mantle 
environment, come either from approximately between 1500 K to 
2700 K or from ambient temperature measurements. Besides that, the 
experimental data does not cover simultaneous high temperature and 
high pressure regions, for example temperatures greater than ~2700 K 
at pressures expected near the bottom of lower mantle. Hence, we expect 
wider posterior probability density functions for volume in regions of 
sparse experimental data coverage. 

So far we have only shown the mean of the posterior pdf for volume. 
To illustrate more clearly the effect of the high temperature data of 
Fiquet et al. (1996) on the posterior pdf at low pressure, high temper-
ature, we take two data points from the test set (denoted by ‘+’ in Fig. 3, 
top panel). Both points are drawn at low pressures, but one is at high 
temperature and located away from the solid line and another at low 
temperature is close to it. In Fig. 4 posterior pdfs at those points are 
shown. They show a more uncertain prediction for the high temperature, 
low pressure input. Once we remove Fiquet et al. (1996) data from 

Fig. 2. Experimental P-V-T data for MgO used in this study (Fei, 1999; 
Jacobsen et al., 2008; Fei et al., 2004a; Fei et al., 2004b; Dewaele et al., 2000; 
Speziale et al., 2001; Utsumi et al., 1998; Fiquet et al., 1999; Ye et al., 2017; 
Kono et al., 2010; Dorfman et al., 2012; Zhang, 2000; Fiquet et al., 1996; 
Dubrovinsky and Saxena, 1997; Hirose et al., 2008; Litasov et al., 2005; Mur-
akami et al., 2012; Sinogeikin and Bass, 2000; Li et al., 2006; Fan et al., 2019) 
to train the MDNs. Data with uncertainties from X-ray diffraction experiments 
(in static high P-V-T, Brillouin spectroscopy and ultrasonic interferometry) are 
collected for the analysis. Note: uncertainties in collected experimental data are 
not plotted because the scale would be inappropriate to visualize them. (For 
interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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Fig. 3. Performance of MDNs. Target volumes from the test data set are compared with mean volumes (Eq. (6)) predicted by the MDNs. Top panel shows mean 
volumes predicted by the MDNs trained with all experimental data while bottom shows results with high temperature data of Fiquet et al. (1996) and Murakami et al. 
(2012) excluded (also see Section 4.2). The pressure (left) and temperature (right) range of the test data set is shown by colourbars on both panels. We note that the 
solid red line in the figure refers to a perfectly resolved network prediction. Points located near this line are well resolved and those located away represent more 
uncertain volume predictions. The MDNs best predict the volumes in low temperature regions and at simultaneous high temperature and pressure. However, 
including high temperature data of Fiquet et al. (1996) into training provides more uncertain volume predictions in the low pressure, high temperature region. For 
two data points marked with “+” in both left and right plots in the top panel, we plot posterior pdfs for volume in Fig. 4. One datum is located in the low pressure, 
high temperature region where the effect of high temperature data from Fiquet et al. (1996) is significant and another away from it. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Posterior pdfs for MgO volume (solid curves) for two data points from top panel of Fig. 3 together with their target values (red dashed line) and conditional 
mean volume (black dashed line). Left: inputs are 24.86 GPa and 300.19 K. The posterior pdf is narrow and uni-modal with the posterior mode located close to the 
target value. Right: inputs are 1.36 GPa and 2116.03 K. The posterior pdf is broad and multi-modal with target volume located away from the posterior modes. The 
smaller peak is the due to experimental P-V-T data of Fiquet et al. (1996). (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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training (see Section 4.2), the network predicts narrow posterior pdfs 
showing less uncertainty (cf. including those in training) in volume. 
Although excluding Fiquet et al. (1996) provides less uncertain volume 
predictions, due to limited availability of experimental data at high 
temperature and low pressure (approximately >1500 K and <25 GPa) 
the predicted posterior pdfs are still slightly wider than at similar tem-
peratures and high pressures (also see Section 4.2 and Appendix C.1). 

4. MDN predicted material properties 

4.1. P-V relationship at 300 K 

The predicted pdfs for volume along a 300 K isotherm are presented 
in Fig. 5. A subset of the training data (i.e. only around 300 K temper-
ature) is also shown along with the MDN predictions. The uncertainty in 
volume increases with pressure as shown by the increasing width of 
pdfs. This is expected as the training data (around 300 K) are more 
consistent with each other at lower pressures. 

In Fig. 6 we compare pdfs for the volume of MgO along a 300 K 
isotherm with EOSs of Tange et al. (2009), Speziale et al. (2001), Stix-
rude and Lithgow-Bertelloni (2005, 2011) and Dorogokupets and 
Dewaele (2007) (denoted as T09, S01, SLB0511 and DD07, respec-
tively). In this study, we use MINUTI (Sturhahn, 2020) to compute 
volume, bulk modulus and thermal expansivity as a function of pressure 
(and temperature) from these EOSs. For ambient temperature compar-
isons, static equations (i.e. third-order finite strain or Vinet) together 
with respective fitting parameters (V0, K0T and K′

0T) as reported in the 
literature are used. We show the pdfs for volume (Fig. 6, left panel) at 
every 5 GPa. The EOSs diverge as the pressure increases. At 135 GPa, the 
difference in volume between the equations of state of Stixrude and 
Lithgow-Bertelloni (2005, 2011) and Tange et al. (2009) is ~0.68 Å3, 
whereas one standard deviation predicted by the neural networks is 
±0.54 Å3. Moreover, the slope of each individual EOS differs. This can 
best be visualized by computing ∂P

∂V for all EOSs (see Fig. 6, right panel). 
Although Speziale et al. (2001) and Stixrude and Lithgow-Bertelloni 
(2005, 2011) are based on third order Birch-Murnaghan EOSs, their 
fitting parameters are different. Comparisons between different EOSs 
and their fitting parameters are given by other studies (e.g. Dor-
ogokupets and Dewaele, 2007; Tange et al., 2009; Ye et al., 2017, etc.). 
The mean slope predicted by the neural network shows a slightly stiffer 
EOS compared to the “standard” EOSs from the literature. This may be 
due to the fact that our training data include experiments which make 
use of different pressure standards (e.g. Ruby, NaCl, Pt, Au) than the 
EOSs considered for comparison (which are based on MgO). 

Nevertheless, such a difference in slope together with the volume dif-
ference will inevitably lead to a significant divergence in the inferred 
compressibility and thermal expansivity (see Section 5). 

4.2. High temperature P-V-T relationships 

We use the trained MDNs to predict volumes of MgO at different 
temperatures. As an example, we plot the predicted pdfs for volume 
along a 2500 K isotherm in Fig. 7, left panel (other isotherms are pro-
vided in Appendix C.1). Similar to the ambient temperature (Section 
4.1), the 2500 K isotherm shows a well-constrained volume prediction at 
lower mantle pressures. However, the high temperature pdfs show more 
uncertain volume predictions at low pressures (except at 0 GPa). For 
example, at 5 GPa the pdf is relatively wide and bimodal compared to 
that at high pressures (e.g. 100 GPa) which is unimodal. As discussed 
earlier in Section 3.3, high temperature experimental data of Fiquet 
et al. (1996) do not include a thermal pressure term, and it is likely the 
total pressure is underestimated. This can be visualised in Fig. 7, left 
panel, where training data points located approximately between 
5–15 GPa have a smaller volume compared to data around 20 GPa and 
~2500 K. We train another network without the high temperature data 
of Fiquet et al. (1996) and plot the results on the right panel of Fig. 7. 
The posterior pdf for volume at 5 GPa now shows a unimodal peak and 
the width is decreased by approximately a factor of 2 (cf. left panel at 
5 GPa). Although removing Fiquet et al. (1996) reduces the un-
certainties in volume, the posterior pdf is still wider than at high pres-
sures for the same temperature. This region of low pressure, high 
temperature is known to be dominated by anharmonic effects. Although 
these effects are implicitly represented in our volume pdfs, there are 
limited experimental data in this region (temperature >1500 K and 
pressure <25 GPa) to further constrain them. 

We compare the MDN predicted pdfs along a 2500 K isotherm 
(Fig. 7) with some conventional EOSs (Tange et al., 2009; Speziale et al., 
2001; Stixrude and Lithgow-Bertelloni, 2005, 2011; Dorogokupets and 
Dewaele, 2007). The variation in volume between these EOSs at high 
pressures is similar to that observed at 300 K. It has been noted in earlier 
studies (e.g. Ye et al., 2017) that the discrepancies in high temperature 
EOSs are partly due to persistence of the disagreement between them at 
300 K (reference isotherm). Furthermore, at low pressure (<25 GPa) 
Speziale et al. (2001) diverges from other EOSs. This deviation is likely 
due to different values of fitting parameters together with distinct 
Grüneisen models to compute the thermal behavior. For example, Spe-
ziale et al. (2001) do not consider anharmonic effects, and their ambient 
Grüneisen parameters are also different than other studies (see e.g. Ye 
et al., 2017; Dorogokupets and Dewaele, 2007). Besides that, as with the 

Fig. 5. The predicted pdf by the MDNs for volume of MgO along a 300 K isotherm. Left: pdf for volume up to lower mantle pressures is shown as a continuous 
function of pressure. The colour scale shows the value of the probability density function. Right: pdfs on volume are shown at 5 GPa pressure intervals together with 
training data around 300 K (shown as circles in the background). The training data show less variation at low pressures which results in narrower pdfs compared to 
high pressures. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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case of the 300 K isotherm, all explicit EOSs lie within the uncertainty 
range predicted by our MDNs, which is expected because some training 
data come from the MgO pressure scales described by these EOSs. 

At 2700 K, the MDN predicted pdfs (Fig. 8) show bimodal volumes in 
the pressure range of approximately 45–90 GPa. Once we plot the 
associated training data on top, it becomes clear that the smaller peaks 
in the pdfs are the representation of experimental data points of Mur-
akami et al. (2012). Surprisingly, for the same reported volume and 
temperature they report pressures which are different from each other 
by about 36 GPa. However, their reported densities appear to be phys-
ically reasonable. Nevertheless, we train another network to discrimi-
nate how much uncertainty is coming from those specific data points. In 
doing so, the posterior becomes unimodal. At 60 GPa, including Mur-
akami et al. (2012) data leads to a factor of approximately 3.5 wider pdfs 
for volume (Fig. 8, right panel) compared to results without those data. 
However, the effect of those data points seems to be local in P-V-T space 
and their influence decreases for example, at higher pressures. This is 
because MDNs interpolate locally in between samples, and data in one 
region of P-T space does not influence uncertainties everywhere. 

5. Bulk modulus and thermal expansivity 

Since the training data do not contain explicit values for the volume 
derivatives with respect to the inputs (P and T), getting constraints on 
bulk modulus (-V ∂P

∂V ) and thermal expansivity (1
V

∂V
∂T) is less straightfor-

ward than constraining the volumes. Hence, we follow a slightly 
different approach compared to volume. We calculate the mean volume 
using Eq. (6) for any given P and T from each earlier obtained MDN. 
Then we perturb pressure (P + δP) while keeping the temperature fixed 
and compute the mean volume (<V(P+ δP, T) >) for that pressure from 
the same MDN. This way, we can compute the mean isothermal bulk 
modulus (K) as shown in Eq. (7). Similarly, we evaluate mean volumes 
for two slightly different temperatures but at a fixed pressure, and use 
that to compute the thermal expansivity, α (Eq. (8)). For numerical 
differentiation, we use δP = 0.1 GPa and δT = 1 K. Using a different 
value for ∂P or ∂T provides similar results. 

< K|P, T;α >=< − V(P,T) >
δP

< V(P + δP, T) > − < V(P,T) >
(7) 

Fig. 6. Left: our predicted pdfs for volume of MgO along a 300 K isotherm (black lines) compared with previously published EOSs (Tange et al., 2009; Speziale et al., 
2001; Stixrude and Lithgow-Bertelloni, 2005, 2011; Dorogokupets and Dewaele, 2007) (coloured lines). Pdfs for volume are shown at 5 GPa pressure intervals. Right: 
∂P
∂V of MgO EOSs from the left panel. For this computation, we take the mean (Eq. (6)) of the output posterior on volume at every 0.1 GPa interval. The divergence 
between different EOSs increases with pressure. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Fig. 7. Left: pdfs for volume of MgO along a 2500 K isotherm predicted by MDNs trained with all data. Right: same as left but Fiquet et al. (1996) and Murakami et al. 
(2012) data are excluded. For comparison, volumes along the high temperature isotherm for some previously published EOSs (Tange et al., 2009; Speziale et al., 
2001; Stixrude and Lithgow-Bertelloni, 2005, 2011; Dorogokupets and Dewaele, 2007) are computed using MINUTI (Sturhahn, 2020). On both panels we plot a 
sub-set of the total training data, namely those data at temperatures between 2100 and 2600 K. Excluding Fiquet et al. (1996) data from neural network training 
significantly reduces the width of the pdfs at high temperature and low pressure. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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< α|P,T;α >=
1

< V(P, T) >
< V(P,T + δT) > − < V(P,T) >

δT
(8) 

Hence, in this approach, we take the derivatives of the P-V (or T-V) 
curve defined by the mean of the posterior pdfs from each neural 
network rather than fitting P-V-T data to a predefined EOS to get fitting 
parameters (such as K0T and K′

0T). Since we have trained a large number 
of MDNs (103) to predict the posterior pdf for volume, we get the same 
number of mean isothermal bulk modulus and thermal expansivity 
values. This way, each neural network approximates a slightly different 
mapping and its derivatives, and the distribution on the mean bulk 
modulus and thermal expansivity can approximate the uncertainties on 
them. Moreover, we use the same networks to compute the pdfs for 
volume and the mean volumes; the volume that goes into the calculation 
of bulk modulus and thermal expansivity is therefore consistent. 

As an example, Fig. 9 shows bulk modulus as a function of pressure 
along two selected isotherms (refer to Appendix C.2 for other iso-
therms). The bulk modulus predicted by neural networks shows a higher 
value at high pressure along the 300 K isotherm compared to conven-
tional EOSs. As mentioned earlier, this is likely due to the fact that the 
training data come from experiments which make use of different EOSs 
and pressure standards than those (MgO based) EOSs considered for 
comparison. Moreover, the fitting parameters (V0, K0T and K′

0T) are 
different for different EOSs. Hence, although these EOSs predict volume 
within the uncertainty range predicted by MDNs (Fig. 6, left panel), their 
derivatives (Fig. 6, right panel) differ significantly from each other and 
also from the MDN prediction, leading to different values of bulk 
modulus. 

One high temperature (2000 K) comparison between the neural 
network predicted mineral properties and other studies is shown in 
Fig. 9c–f. In general, bulk modulus values predicted by the neural net-
works agree well with explicit EOSs, although Tange et al. (2009) shows 
slightly higher values at moderate pressures (e.g. 60 GPa). The mean 
bulk modulus predicted by the neural networks shows a large uncer-
tainty at low pressures (below ~25 GPa) when high temperature data by 
Fiquet et al. (1996) are included. In Fig. 9d, we show the bulk modulus 
predicted by the neural network trained without Fiquet et al. (1996) 
(and Murakami et al., 2012). Here, the uncertainties at low pressure are 
significantly decreased. Similarly, neural networks trained without 
those two data sets predict physically reasonable thermal expansivities 
(Fig. 9f) compared to those trained with all data sets (Fig. 9e). At high 
temperatures, we still see a sharp bend around 20 GPa (also see Ap-
pendix C) which we suggest may be related to anharmonic effects. As the 

experimental data is relatively sparse in this region, one would need 
additional measurements (or theoretical studies) to confirm this. 
Furthermore, the thermal expansivity of Speziale et al. (2001) deviates 
from other EOSs. As mentioned in earlier studies (e.g. Dorogokupets and 
Dewaele, 2007), this may be improved by including anharmonic terms 
in the EOS. In equation of state formalisms, one can add an anharmonic 
term to the total free energy. This additional term has a T2 dependence, 
rather than simply a linear temperature term. The effect of adding this 
term is most significant at low pressures, and can potentially capture 
more accurately the volume dependence at high temperatures compared 
with the standard thermal models without anharmonicity (for temper-
atures less than or equal to 2700 K in this meta dataset). 

Besides low pressure, including Murakami et al. (2012) data during 
network training provides mean bulk modulus uncertainties that are 
more than 4 times larger (Fig. 10a) than excluding them together with 
Fiquet et al. (1996), and this discrepancy reduces at higher pressures 
(Fig. 10b). Moreover, as expected, neither Fiquet et al. (1996) nor 
Murakami et al. (2012) data influence bulk modulus at low tempera-
tures, as shown in Figs. 10c and 9a, b. 

6. Discussion 

Fitting parameters (such as K0T and K′

0T) are inherent to explicit 
global EOSs, and a correlation between them tells us how one parameter 
changes with another providing optimal global fit. We do not estimate 
the uncertainties on fit parameters of EOSs which are specific to the 
underlying global functional form. Instead, we directly provide the un-
certainties on volumes which are local in P-T space. The MDN is a kernel 
based method where we fit (a mixture of Gaussian) kernels to the 
experimental data and get an arbitrary probability density function on 
volume at any given P and T. The neural networks are flexible and 
interpolate locally; the uncertainties in one region of P-T space do not 
impact the posterior pdf everywhere. For example, Fig. 7 shows no 
change in high pressure pdfs while removing Fiquet et al. (1996) data in 
the region of low pressures. Our approach is also very powerful at 
identifying data inconsistencies when using different data sources. 

The posterior pdfs given by the MDNs represent uncertainties in 
volume due to experimental errors, data gaps and data inconsistencies 
from different studies. Together with the uncertainties in mean 
isothermal bulk modulus and thermal expansivity, these results can be 
used by, for example, seismologists working on thermochemical inter-
pretation of seismic data. Although uncertainties in volume, bulk 
modulus and thermal expansivity vary locally depending on sparsity and 

Fig. 8. Left: pdfs for volume of MgO along a 2700 K isotherm predicted by the MDNs trained with all data. We also plot a sub-set of the training data, namely those 
whose temperatures lie between 2600 and 2800 K. Note: the large uncertainty in volume in the low pressure region (approximately below 25 GPa) is due to inclusion 
of data from Fiquet et al. (1996) as discussed in the text. Right: Comparison of posterior pdfs for volume predicted by MDNs trained with and without Murakami et al. 
(2012) (M12) and Fiquet et al. (1996) (F96) data at 2700 K and 60 GPa. The small peak at around 66 Å3 is due to Murakami et al. (2012) data. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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consistency of the experimental data, using these outputs from MDNs, 
one can directly compute bulk wave speed (φ2 = KS/ρ) and density (ρ) at 
any given pressure and temperature. However, in order to compute bulk 
wave speeds at temperatures applicable to the lower mantle, we need 
the adiabatic bulk modulus (KS = KT(1 + αγT)), where γ is Grüneisen 
parameter and α is the thermal expansivity. Nevertheless, assuming that 
the difference between isothermal (KT) and adiabatic (KS) bulk moduli, 
at 300 K is roughly within ±1.0% (Marquardt et al., 2018), the bulk 
wave speed of MgO is 11.14 ± 0.07 km/s at 135 GPa. At the same 
condition, the relative uncertainty (one standard deviation around 
mean) in density predicted by the MDNs is about ±1.0%. This is larger 
than or comparable to the relative density variations in lower mantle 

estimated by previous studies (e.g. Ishii and Tromp, 1999; Trampert 
et al., 2004; Koelemeijer et al., 2017). Although the Grüneisen param-
eter varies as a function of volume that ultimately depends on pressure 
(and temperature), we assume it to be approximately 1.1 ± 0.3 (e.g. 
Stixrude and Lithgow-Bertelloni, 2011; Ye et al., 2017) at 2700 K and 
135 GPa to give an estimate of uncertainties in bulk wave speed. In 
doing so, the relative uncertainty in bulk wave speed is about ±1.77% 
which is larger than the reported bulk sound speed variation in the lower 
mantle (e.g. Trampert et al., 2004). 

Estimation of mineral properties beyond the range of experimental 
data requires extrapolation. The standard EOSs can easily be used for 
extrapolation provided that the assumptions of the functional form hold 

Fig. 9. Comparison of the mean bulk modulus (a, b, c and d) and thermal expansivity (e and f) predicted by the neural networks with previously published equations 
of state for MgO (Tange et al., 2009; Speziale et al., 2001; Stixrude and Lithgow-Bertelloni, 2011; Dorogokupets and Dewaele, 2007) as a function of pressure. The 
output from the neural networks is shown with greyscale – the darker the region of the plot, the greater the number of MDNs which predict the bulk modulus (or 
thermal expansivity) has that value. Frequency counts for output from the MDNs are at intervals of 1 GPa for pressure and bulk modulus, and 10− 7 K− 1 for thermal 
expansivity. For (a), (c) and (e) neural networks are trained with all collected data, whereas for (b), (d) and (f) data from Fiquet et al. (1996) and Murakami et al. 
(2012) have been excluded. Due to the inclusion of Fiquet et al. (1996) data we obtain large uncertainties in bulk modulus and thermal expansivity in low pressure, 
high temperature regions. Note: the overlapping of different EOSs makes the background histogram difficult to visualise. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this article.) 
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in the region of no data. In general, it has been observed that MDNs 
provide a wider estimate of uncertainties in the region of little to no 
training data (Käufl et al., 2016a). Here too, as shown by the wider pdfs 
in Fig. 11, the uncertainty in predicted mineral properties increases 
when the network has to extrapolate from distant training data. We note 
that EOSs of Stixrude and Lithgow-Bertelloni (2005, 2011) and Tange 
et al. (2009) closely follow the pdf predicted by the network indicating 
that it learns a functional form present in the data, but errs on the 
cautious side by returning larger uncertainties. From a Bayesian 
perspective, we would advise against extrapolation as this covers a re-
gion outside the prior. Fig. 11, however, demonstrates some capability 
of neural networks to extrapolate beyond the ranges of the data, 
although we would need to establish how far this is related to the precise 
network architecture. 

The shear modulus is required to calculate compressional and shear 
wave speeds. There is no thermodynamic expression for the shear 
modulus, but functional forms are often assumed, for example third 
order finite-strain and shear counterpart of the Keane EOSs (Keane, 
1954) by Kennett (2017), to compute the shear modulus which are based 
on the bulk modulus calculation. One can also use the linear relationship 
among shear modulus, adiabatic bulk modulus and pressure given by 
Stacey (1995). However, the uncertainties in shear modulus would then 
be dependent on those in bulk modulus, and the assumption that shear 
properties can be constrained from the bulk properties. An alternative is 
to use data from experiments such as Brillouin Spectroscopy that pro-
vide shear wave speed information. Together with unit-cell volume, as 
measured by X-ray diffraction on the same sample (e.g. Murakami et al., 

2012; Kurnosov et al., 2017) and known sample composition, the den-
sity and thus shear moduli can be determined. However, these data sets 
do not cover simultaneous high pressure and temperature regions that 
are expected in the Earth’s lowermost mantle. For example, the highest 
temperature and pressure data for MgO reported in Murakami et al. 
(2012) are six measurements at 2700 K and between 32.5–68.4 GPa. 
Nevertheless, a combination of wave speed data from ultrasonic tech-
niques and Brillouin Spectroscopy together with high P-V-T data from 
X-ray diffraction techniques has the potential to exhaustively sample the 
lower mantle geotherm in the near future (Marquardt and Thomson, 
2020). 

We note that, in principle, a combination of experimental data and 
theoretical calculations (e.g. Karki et al., 1999; Oganov and Dor-
ogokupets, 2003; Wu et al., 2008) is possible. This may provide addi-
tional constraints on the predicted mineral properties covering a wider 
range of pressure and temperature. Since our approach implicitly 
identifies the consistency between different data sources, a proper 
rationale can be developed to mix data and uncertainties from theory 
with experiments. Furthermore, the MDN based approach can easily be 
extended to the upper mantle and the core. Since MDNs are flexible, they 
can be employed to model multi-mode targets/outputs. This would be 
helpful to model for example volume anomalies induced by the iron spin 
transition (e.g. Marquardt et al., 2009; Speziale et al., 2007; Lin et al., 
2006; Crowhurst et al., 2008; Solomatova et al., 2016). A natural pro-
gression of this work is to extend it for solid solution. It is straightfor-
ward to include composition, e.g. the Mg/Fe ratio, by including it as an 
extra dimension in the input data (i.e. P, T and mol% Fe in 

Fig. 10. Comparison of the MDN predicted mean bulk modulus at (a) 2700 K, 60 GPa, (b) 2700 K, 135 GPa, (c) 300 K, 135 GPa and (d) thermal expansivity at 
2700 K, 135 GPa of MgO trained with and without Murakami et al. (2012) (M12) and Fiquet et al. (1996) (F96). The effect of Murakami et al. (2012) data on bulk 
modulus and thermal expansivity is mainly around 2700 K, and it gradually reduces as pressure decreases or increases outside the interval approximately 45–90 GPa. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ferropericlase) provided there is enough training data. 

7. Conclusions 

This study demonstrates the feasibility of a neural network based 
approach to infer the material properties of lower mantle minerals. In 
our approach, we learn the underlying P-V-T relationship providing a 
reasonable approximation of the P-V-T data of MgO. This allows us to 
compute the uncertainties in density, thermal expansivity and bulk 
modulus without prescribing an explicit EOS. Once the networks are 
trained, it is a simple function that can be evaluated at any given pres-
sure and temperature to get volume, mean bulk modulus and thermal 
expansivity with uncertainties. In order to train the networks, we collect 
data from high P-V-T experiments without prior selection of data (e.g. 
based on pressure scale or functional form used). Hence, our un-
certainties are not biased towards a subjective selection of experimental 
data. Furthermore, our approach identifies inconsistencies between data 
from different sources. The assumption that an EOS follows a particular 
form provides a priori information by fixing their form (or thermody-
namic model) and/or pressure scale. It remains to be determined which 
EOS form best describes the thermodynamic behaviour of MgO at wide 
range of pressures and temperatures. In this study, we compare a few 
“standard” EOSs with the material properties inferred from neural net-
works and show that choosing one particular explicit form provides a 
biased estimate of uncertainties. 

Based on the prediction performance of the MDNs and comparison 
with conventional EOSs (such as Figs. 3, 7, 9, and Appendix C), we can 
be most confident about physical interpretation of seismic data in the 
lower mantle within the prior range of experimental data (Fig. 2). In the 

regions where there exists little evidence about how the P-V-T rela-
tionship behaves, such as at low pressure, high temperature (<25 GPa, 
>1500 K), and temperatures approximately >2700 K at pressures ex-
pected towards the core-mantle boundary, neural networks show 
increasingly uncertain predictions. Although for the Earth’s lower 
mantle, low pressure and high temperature environments may not be 
relevant, they are expected in other planetary bodies such as the Moon 
and Mars (e.g. Khan et al., 2014, 2018). With currently available data, it 
likely provides meaningful uncertainties that could be used by seis-
mologists within certain ranges of pressure and temperature, while 
highlighting the P, T regions in which more experimental (or theoret-
ical) data is needed before we can draw robust conclusions on temper-
ature and composition. 
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Fig. 11. Probability density function for volume of MgO along a 2700 K isotherm (a) and 100 GPa isobar (b). Training data belonging to temperature between 2400 
and 3000 K (a), and pressure range from 96 to 103 GPa (b) are also shown. Magenta (SLB0511) and red (T09) curves are Stixrude and Lithgow-Bertelloni (2005, 
2011) and Tange et al. (2009) EOS, respectively. They follow the volume trend predicted by the network. In the region outside the prior data, the trained MDNs 
provide wider pdfs as they are forced to extrapolate the volume. To illustrate this more clearly, volume pdfs at a fixed temperature (and pressure) and three different 
pressure (and temperature) are also shown in c (and d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Appendix A. Generalised theory of the MDN 

Let, x = {x1, x2, …, xI} be the input data to the feed-forward part of the MDN. Please note, to generalise this section, we write inputs as x and targets 
as mk instead of P & T and V, respectively. The feed-forward network outputs yk are computed as a weighted sum of the outputs from the hidden nodes 
plus a bias 

yk = f2

(
∑J

j=1
αjkhj + α0k

)

(A.1)  

where the function f2 is an identity function such that f2(p) = p, αjk is the hidden layer weight matrix and α0k represents a bias term of each output node. 
Now, the hidden node outputs hj are computed as 

hj = f1

(
∑I

i=1
αijxi + α0j

)

(A.2)  

where the function f1 is a logistic sigmoid function f1(p) = 1
1+exp(− p), αij is the input layer weight matrix, α0j are the biases of hidden nodes and xi are 

input data. yk are related to the parameters, namely weights (πn), means (μn) and standard deviations (σn) of Gaussians in the Gaussian Mixture Model 
(GMM) by the following relationship (for details see e.g. Bishop, 1994; de Wit et al., 2013) 

πn(x;α) =
exp
(
y(π)k (x;α)

)

∑M
n=1exp(y(π)k (x;α))

, (A.3)  

μn(x;α) = y(μ)k (x;α) and (A.4)  

σn(x;α)) = exp
(
y(σ)k (x;α)

)
(A.5)  

Appendix B. MDN initialization and training details 

The total data (x) is divided into three sets – training (70%), monitoring (20%) and test (10%) sets such that 

xtrain⊂x, xmonitor⊂x and xtest⊂x (B.1)  

with xtrain∩ xmonitor = ∅, xtrain∩ xtest = ∅ and xmonitor∩ xtest = ∅. 
Using the training data (xtrain) we train the MDN. However, before we train the MDN we need to decide on initial values of the network parameters. 

We randomly draw the input layer and hidden layer weights (Bishop, 1995) according to the following Gaussian distributions 

αij ∼ 𝒩

(

0,
1

I + 1

)

(B.2)  

and 

αjk ∼ 𝒩

(

0,
1

J + 1

)

, (B.3)  

respectively. Where I and J are number of input and hidden nodes, respectively. Similarly, the output layer biases are initialized by a K-means 
clustering algorithm (i.e. fitting a GMM to the training data set). Once the initialization is done and the training begins, the difference between the 
output and the target can be computed according to the error function 

Etrain =
∑

train
− ln

(
p(mk|xtrain;α)

)
(B.4)  

which is summed over all training data providing the average error. This function is also called the loss function which is minimized iteratively using 
the ADAM optimization method (see detailed algorithm in Kingma and Ba (2014)). 

The explicit dependence of output posterior on the network parameters (see Käufl et al., 2016a and references therein) can be avoided by using 
multiple MDNs and combining them by weighted sum. The weight of each MDN is determined by the test set error as 

wi = exp
(

−
Etest(xtest,αi)

N

)

(B.5)  

where index i denotes the ith MDN (C MDNs in total) and N is the size of the test data set, and the MDNs are combined according to 
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p(mk|x;α) =
∑C

i=1

wi
∑

jwj
pi(mk|x;αi). (B.6)  

Appendix C. Mineral properties 

C.1. P-V-T EOS

Fig. C.1. P-V relationship of MgO predicted by MDNs trained with (left) all data and (right) excluding Murakami et al. (2012) and Fiquet et al. (1996). Comparison 
with previously published EOSs (Tange et al., 2009; Speziale et al., 2001; Stixrude and Lithgow-Bertelloni, 2005, 2011; Dorogokupets and Dewaele, 2007) along 

A. Rijal et al.                                                                                                                                                                                                                                    



Physics of the Earth and Planetary Interiors 319 (2021) 106784

14

1500 K (top), 2000 K (middle) and 2700 K (bottom) isotherms also shown. (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
C.2. Bulk modulus

Fig. C.2. Comparison of the bulk modulus of MgO predicted by the neural network along 1500 K (top) and 2700 K (bottom) isotherms with other studies (Tange 
et al., 2009; Speziale et al., 2001; Stixrude and Lithgow-Bertelloni, 2011; Dorogokupets and Dewaele, 2007) as a function of pressure. Left panel shows results from 
MDNs trained with all data and the right panel shows results from MDNs excluding Murakami et al. (2012) and Fiquet et al. (1996) data in training. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

C.3. Thermal expansivity 

A. Rijal et al.                                                                                                                                                                                                                                    



Physics of the Earth and Planetary Interiors 319 (2021) 106784

15

Fig. C.3. Comparison of the thermal expansivity of MgO predicted by neural networks with Tange et al. (2009), Stixrude and Lithgow-Bertelloni (2011) and 
Dorogokupets and Dewaele (2007) along 300 K (top), 1500 K (middle) and 2700 K (bottom) isotherms as a function of pressure. Left panel: MDNs trained with all 
data. Right: MDNs trained without Murakami et al. (2012) and Fiquet et al. (1996) data. (For interpretation of the references to colour in this figure legend, the reader 
is referred to the web version of this article.) 
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