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Supplementary Section 1 Random Combination of IceModels

This section details the mathematical expressions used to generate a synthetic ice history based on a random combination of
previous ice sheet reconstructions (Supplementary Table 1). Starting from a set of regional ice histories with ice thickness Ii(t), we
generate the synthetic ice model (I(t)) within a hierarchical framework:

I(t) =
∑
i∈M

∑
j∈N

Ii(t + δ)W j (1)

where M is an array containing randomly selected indices:

M = (m1,m2, · · · ,mn)
m ∼ [U(1,K)]
n ∼ [U(2, 6)]

(2)

U indicates a uniform distribution and [ ] means that all float numbers are rounded to their nearest integers. m and n control which
original ice models are selected, and the number of random models being selected, respectively. K indicates the number of ice
histories available for each regional ice sheet component.

δ in equation 1 is defined by:
δ ∼ [N(0, 2)] (3)

This is a Gaussian random noise model that moves the whole ice history younger or older. The selected ice history Ii(t + δ) can be
further expressed as:

Ii(t + δ) =


Ii(25), t + δ > 25
Ii(t + δ), 0 ≤ t + δ ≤ 25
Ii(0), t + δ < 0

(4)

where 25/0 is the first/last time step of ice history used in this study.

Lastly, W is an array containing random weighting factors for combining different ice models:

W = (w1,w2, · · · ,wK)

w j =

{
0, j , i
∼ Dir(α), j = i

α ∼ U(0.2, 1)

(5)

Dir indicates a Dirichlet distribution, which is used to generate random weighting factors that fulfil the conditions w j ≥ 0 and∑
(W) = 1. The concentration parameter α describes the concentration of random samples; a smaller α value will generate samples

where the vast majority of the mass is concentrated in just a few of the values, a larger α value will generate samples where the
mass is more evenly distributed.

Supplementary Section 2 Weighted Principal Component Analysis of IceModels

This section details the mathematical expressions used to generate a synthetic ice history based on the weighted Principal
Component Analysis (wPCA) approach. The wPCA approach is used to extract important ice morphological patterns from the
initial set of reconstructions25. A weighting scheme is adopted to account for the spherical geometry of the Earth, which means
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Region Model Name Modelling Method Reference
Global PaleoMIST Geomorphological evidence determined ice history assuming ice sheets

are perfectly plastic and under equilibrium conditions
Gowan et al., 20211

ANU Near- and far-field GIA modelling Lambeck et al.,2–8

ICE_6G Near- and far-field GIA modelling Peltier et al., 20159

ICE_5G Near- and far-field GIA modelling Peltier 200410

North America ICE-7G_NA Near-field GIA modelling Roy et al., 201811

NAICE+ Near-field GIA modelling Gowan et al., 201612

Han_2021 Coupled ice-sheet and GIA modelling Han et al., 202113

GLAC1-D-NA∗ Glacial systems modelling with Bayesian style calibration Tarasov et al.,14,15

Eurasia BRITICE-
CHRONO∗

Geomorphological evidence determined ice history assuming ice sheets
are perfectly plastic and under equilibrium conditions

Clark et al., 202116

Patton_2017 Thermomechanical ice modelling Patton et al.,17,18

Han_2021 Coupled ice-sheet and GIA modelling Han et al.m 202113

GLAC1-D-EUR Glacial systems modelling with Bayesian style calibration Tarasov et al., 201419,20

Antarctica W12 Ice sheet dynamic modelling Whitehouse et al., 201221,22

ICE6G_C Near-field GIA modelling Argus et al., 201423

GLAC1-D-ANT Glacial systems modelling with Bayesian style calibration Briggs et al., 201424

Supplementary Table 1: Ice sheet reconstructions used in this study. ∗For GLAC1-D-NA, we use two ice history scenarios for the
North American Ice Sheet (nn9927 and nn9894), and for BRITICE-CHRONO, we use two scenarios for the Eurasian ice sheets
(1C and 1D). +Note, NAICE does not contain the Greenland Ice Sheet component.

that grid cells at different latitudes cover different areas. We apply a weighting factor to each grid cell that is proportional to its
area. Using the wPCA approach, we calculate six principal components (PCs) for each ice-sheet region and time slice. This
accounts for more than 99% of the variance, and hence captures most of the spatial variability. Synthetic regional ice morphology
I(t) at time t can then be generated by linearly combining different PCs:

I(t) = Ī(t) +
6∑

i=1

xi(t)Vi(t + δ) (6)

δ ∼ [N(0, 2)] (7)

where Ī(t) represents the mean ice-sheet morphology at time t, xi denotes the random weighting coefficient, and Vi(t) is the
ith PC. To represent the temporal uncertainty within the ice sheet reconstruction, we applied a Gaussian random time shift δ
(rounded to an integer, represented by square brackets) to each PC. This means that the final ice morphology can be influenced
by temporally nearby PCs. The 2 ka Gaussian random time shift is selected to reflect a conservative estimate of the temporal
uncertainty associated with the empirical evidence used to constrain ice history models.

To further sample the variability of ice history, we use two methods to represent the random weighting coefficient xi, with the
first method using a temporally uniform coefficient and the second method using a temporally variable coefficient (see main text
Figure 1). The first method is designed to represent general uncertainty associated with overall ice volume, and the second method
is designed to reflect uncertainty associated with the short-term ice-sheet response to abrupt climate change (e.g., meltwater
pulses). The temporally uniform coefficients are drawn from a normal distribution with zero mean and unit standard deviation.
The temporally variable coefficients are generated by creating a time series of random noise (zero mean and three unit standard
deviation) and then applying a Gaussian filter (with three unit standard deviation) to smooth the temporal signal. The filtered signal
is then standardised to maintain zero mean and unit standard deviation. Examples of the resulting random ice histories are given
in main text Figure 1. We do not use the ice model from Han et al., (2021)13 when calculating PCs for the North American and
Eurasian ice sheets because it has not been calibrated to fit any empirical constraints, and this may therefore lead to unrealistic
variability.

Supplementary Section 3 Data Normalisation

We normalised the input ice histories and output RSL variations using the expressions :

Ĩ =
I − µI

σI
(8)

˜RS L =
RS L − µRS L

σRS L
(9)

where I and RS L are 3-dimensional matrices, containing spatial and temporal information about ice thickness and RSL variation
across 1,500 random examples. Ĩ and ˜RS L are also 3-dimensional matrices representing normalised ice thickness and RSL
variation values. µI /µRS L and σI /σRS L are 1-d arrays which contain spatial information about the mean and standard deviation of
ice thickness/RSL across all time slices and random samples (see Supplementary Figure 1).
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Supplementary Figure 1: µI , µRS L, σI and σRS L mentioned in Supplementary section 3. (a, b) Mean and standard deviation of ice
thickness relative to present over all random ice histories and time slices. (c,d) Mean and standard deviation of relative sea-level
variation induced by all random ice histories from 25 ka to present.

Supplementary Section 4 U-Net architecture

U-Net architecture26 is a widely-used convolutional neural network architecture that has been successfully applied to regression
and image segmentation problems27,28. This architecture consists of a contracting path and an expansive path (see architecture in
Supplementary Figure 2). The contracting path consists of three convolution blocks with two repeated convolution operations each
followed by a rectified linear unit (ReLU) activation, followed by a max pooling operation. The expansive path then processes the
feature information through a sequence of max unpooling, concatenation and convolution, to produce a high resolution prediction.
The pooling and unpooling processes can be easily implemented within a Healpix sampling scheme29, see Supplementary Figure
3. The concatenation operations pass the high resolution information from the contracting path to the expansive path which can
effectively mitigate checkerboard artifacts in the outputs. Additionally, for each block in the contracting and expansive paths, we
add a residual layer to create a shortcut for passing information from the start to the end before the ReLU activation function,
which has been shown to mitigate the vanishing gradient problem for deep neural networks30.

Supplementary Section 5 Hyperparameter definition and selection criteria

A full list of hyperparameters used in GEORGIA along with their definitions are given in Supplementary Table 2. In addition to
some commonly-used hyperparameters, there are two hyperparameters that will directly impact the emulation performance of
GEORGIA: graph filter size and U-Net depth.

Graph filter size determines the number of nearest-neighbourhoods included in each convolution process (i.e., spatial lengthscale),
which is important for a GIA problem because the solid Earth deformation signal tends to be long wavelength. For example, the
peripheral bulge formed in response to loading of the North American Ice Sheet can extend over 3,000 kilometres, to places like
Barbados. We tested graph filter sizes of 40 and 60, corresponding to ∼1500 km and ∼1780 km radius. Because increasing the
graph filter size significantly increases the number of parameters to be trained (see Supplementary Table 3), we only test graph
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Supplementary Figure 2: The spherical convolutional neural network U-Net architecture. U-Net consists of a contracting path and
an expansive path, which gives it a U-shaped architecture. Arrows with different colours represent different operations within the
network. For each step of operation, input and output data dimension is noted. ReLU = rectified linear unit activation.

Supplementary Figure 3: Pooling and unpooling within a Hierarchical Equal Area isoLatitude Pixelization (Healpix) sampling
scheme. (a) Degree-8 Healpix of the sphere, n = 768. (b) Degree-4 Healpix of the sphere (n = 192), which can be seen as one level
pooling from degree-8 Healpix. For max pooling, the maximum value within each 4-grid subdivision is assigned to the coarsened
grid. (c) Same as (a) but illustrating the max unpooling process from degree-4 to degree-8 Healpix by copying the maximum value
to the four grids within the original subdivision.

filter sizes up to 60. The U-Net depth defines the number of layers contained in a U-Net, where increasing the depth often enhances
the capability of the model. In addition to the 3-layer U-Net shown in Supplementary Figure 2, we test a 4-layer U-Net structure,
which may be helpful for extracting complex features from the inputs31. Overall, we have trained three emulators: (i) 3-layer
U-Net with 40 graph filter size; (ii) 3-layer U-Net with 60 graph filter size; and (iii) 4-layer U-Net with 40 graph filter size.

Emulator performance for the 150-member unseen testing examples is summarised in Supplementary Table 3. Among the three
tested emulators, emulator (ii) shows the best performance on all three metrics (mean squared error, MSE;, PSNR and SSIM
scores, see definitions in Supplementary section 6; Supplementary Table 3). Compared to emulator (i), emulator (ii) presents a
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Model hyperparameter Value Parameter description
Graph filter size 60 A parameter that determines the number of nearest-

neighbourhoods included in each convolution process.
U-Net depth 3 A parameter that describes the number of convolution con-

volution/deconvolution blocks contained within the contract-
ing/expansive path of U-Net.

Sampling scheme Hierarchical Equal Area isoLatitude Pixelization This defines how a sphere is discretized.
Healpix sampling resolution Hierarchical Equal Area isoLatitude Pixelization

degree 16
This corresponds to a ∼3.66 degree resolution.

Activation function Rectified linear unit activation A function that produces non-linearity after each node.
Optimizer Adam An algorithm that modifies the weights of the neural network

based on the loss gradient32.
Learning rate 0.001 with a constant decay rate of 0.8 for each 100

epochs
A hyperparameter that controls how much to change the model
in response to the estimated error each time the model weights
are updated.

Batch size 8 The number of sub samples given to the network after which
parameter update happens.

Training epoch 1500-2500 depending on the model convergence
situation

A parameters that determines the total number of iterations
of all the training data in one cycle for training the machine
learning model.

Ensemble learning size 30 A parameters used determines how ensemble size of neural
networks used to estimate predictive uncertainty.

Supplementary Table 2: Model hyperparameters used to build or train GEORGIA.

distinct improvement on the RSL misfit in near-field regions (i.e., areas beneath or near past ice-sheet boundaries), suggesting that
a larger graph filter can better capture long wavelength solid-earth deformation. Interestingly, emulator (iii), which has the most
trainable parameters, does not generate a better score, which may be due to the gradient vanishing and over-fitting problems found
in over-deep neural networks31.

Although these three emulators contain more than 20 million trainable parameters, it takes less than 0.3 seconds to emulate
RSL change through the last deglaciation (Supplementary Table 3) on a Graphics Processing Unit (GPU). The computation
time increases to 3.7 seconds when using a Central Processing Unit (CPU). Because it offers the best prediction accuracy with
acceptable emulation speed, we refer to emulator (ii) as GEORGIA in the main text of this paper, where it is used to carry out
further analysis and produce example applications.

Supplementary Section 6 Peak signal-to-noise ratio and structural similarity index measure

Peak signal-to-noise ratio (PSNR) and structural similarity index measure (SSIM) are two metrics that are widely used in measuring
the quality of image and video compression33,34. Specifically, PSNR and SSIM can be expressed as:

PS NR = 10 × log10(
MAX2

MS E
) (10)

S S IM =
1

j∗ × T

j∗∑
i=1

T∑
t=1

(2µ2
ŷi,t
µ2

yi,t
+ c1)(2σŷi,tyi,t + c2)

(µ2
ŷi,t
+ µ2

yi,t
+ c1)(σ2

ŷi,t
+ σ2

yi,t
+ c2)

(11)

where MAX is the absolute maximum value among all grids with MSE indicating mean squared error, and therefore a high PSNR
value indicates low noise level. For SSIM, µyi,t and σyi,t indicate the mean and standard deviation of yi,t (simulation result of a
specific sample at a certain time interval) and σŷi,t ,yi,t is the covariance of a specific pair of emulation and simulation results. c1, c2
are trivial values for preventing a 0 denominator. SSIM provides a similarity metric between 0 and 1 where a higher SSIM value
indicates better emulation quality.

Previous studies suggest that MSE and PSNR, which are based on point-by-point comparison, can perform well in assessing the
quality of noisy images, but they cannot perform well when seeking to discriminate between the structural content of images

Model Name MSE (m2) MAE (m) PSNR SSIM Number of
parameters
(million)

Emulation time with
GPU∗ (s)

Emulation time
with CPU+ (s)

(i) 3-layer-40 1.184 0.73 60.15 0.9994 22.7 0.152 2.06
(ii) 3-layer-60 0.946 0.54 61.11 0.9995 33.8 0.253 3.69
(iii) 4-layer-40 1.925 0.95 58.04 0.9988 94.3 0.204 2.39

Supplementary Table 3: Evaluation of GIA emulators using the 150-member out-of-sample testing set. The three SCNN emulator
names indicate the SCNN layer structure and the size of the graph filter. MSE = mean squared error; MAE = mean absolute
error; PSNR = peak signal to noise ratio; SSIM = structural similarity index measure. ∗ The GPU used for this experiment is 8GB
NVIDIA GEFORCE RTX 3070 Ti. + The CPU used for this experiment is Intel® CoreTM i9 14 Core Processor.
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Supplementary Figure 4: 2D histogram between absolute emulation error and 3σ predictive uncertainty across 150-member testing
set. Among them, 94.5% of 3σ predictive uncertainties are higher than emulation error.

Supplementary Figure 5: 97.5% percentile of mean absolute emulation error across our 150-member testing set at different time
steps. The time is listed above each plot with units of ka BP. This may be regarded as a conservative estimate of emulation
prediction uncertainty under the assumption that unseen ice histories are from a similar distribution to our training set.
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because various types of degradations applied to the same image can yield the same value of MSE and PSNR35. Conversely, SSIM
is correlated with the quality and perception of the human visual system, and it can therefore better discriminate structural content
across different images. Note, SSIM is not directly correlated with either MSE or PSNR, and therefore they provide independent
assessments of output quality.

Supplementary Section 7 GEORGIA interpolation performance

To further test GEORGIA’s generalization performance regarding its ability to interpolate an unseen ice history from a similar
distribution to our training set, we calculate emulation error for four synthetic North American Ice Sheet models by combining the
North American component of ANU3, ICE6G_C9 and GLAC1D (nn9894 scenario14), all of which were used in the PIMP3/CMIP5
simulations36. Specifically, these four North American ice models were created by averaging ANU and ICE6G_C, ANU and
GLAC1D, ICE6G_C and GLAC1D, and ANU, ICE6G_C and GLAC_1D. The temporal variation of the absolute emulation error
associated with each of the four ice model is shown in Supplementary Figure 5. It can be seen that the emulation errors for all four
newly-generated ice models show similar magnitude to our testing set and predictive uncertainty estimates, suggesting GEORGIA
performs well in interpolation problems. In other words, GEORGIA is able to provide accurate emulation results for ice histories
within the variability range of our training set.

Supplementary Section 8 Barystatic sea-level calculation

In this study, we consider barystatic sea level as a direct indicator of global grounded ice volume through time (BS L(t)), which can
be expressed as:

BS L(t) = −
ρice

ρwater

[
Vice(t)

Aocean(t)
−

Vice(t0)
Aocean(t0)

]
(12)

where ρice and ρwater denote ice and ocean water density; Vice(t) and Aocean(t) represents global grounded ice volume and global
ocean surface area at time t, and t0 represents the present day. To consider whether ice is grounded at each location (φ) and time

Supplementary Figure 6: Temporal variation of the absolute emulation error for four synthetic ice models (represented by four
coloured dotted lines). The background shows the spatially averaged, time-varying mean and confidence intervals of the emulation
error and predictive uncertainty (same as Figure 2b in main text). CI = confidence interval.
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(t), grounded ice volume (vice(t, φ)) can be defined as:

Vice(t) =
∫

vice(t, φ)dφ (13)

vice(t, φ) =

0, i(t, φ) = 0 ∨ i(t, φ) < ρwater
ρice

b(t, φ)
vice(t, φ), i(t, φ) ≥ ρwater

ρice
b(t, φ)

(14)

where i(t, φ) and b(t, φ) denote ice thickness and bathymetry (positive value in ocean) at location φ and time t, and b(t, φ) can be
further expressed as:

b(t, φ) = b(t0, φ) + RS L(t, φ) (15)
where RS L(t, φ) indicates RSL prediction either by a physical simulator or the statistical emulator.

One important concept that should be noted is that the definition of BSL used here is a measure of global grounded ice volume, it
does not reflect the magnitude of global mean sea-level rise that would occur if all grounded ice melts37. This is due to the fact that
some ice-sheets are marine-ground and hence the ice volume below flotation will not contribute to global mean sea-level rise.

To calculate the effective ice thickness (ve
ice(t, φ)) that contributes to global mean sea-level rise, equation 14 should be re-written as:

ve
ice(t, φ) =

0, i(t, φ) = 0 ∨ i(t, φ) < ρwater
ρice

b(t, φ)
vice(t, φ) − ρwater

ρice
b(t, φ), i(t, φ) ≥ ρwater

ρice
b(t, φ)

(16)

Gobal mean sea level can then be calculated by substituting vice(t, φ) with ve
ice(t, φ) in equation 12. Based on our 1,500 forward

modelling results, the difference between BSL and the magnitude of global mean sea-level rise since the Last Glacial Maximum
can vary between 5 and 20 m.
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