
1. Introduction
During Quaternary glacial cycles, water-mass redistribution related to the waxing and waning of ice sheets altered 
global mean sea-level by as much as ∼130 m. The spatially variable response of the solid Earth, oceans and global 
gravitational field to that change in water mass is known as glacial isostatic adjustment (GIA), a process which 
causes local relative sea level (RSL; distance between the sea surface and the solid Earth) to differ substantially 
from global mean sea level. GIA models that describe RSL change (Farrell & Clark, 1976; Whitehouse, 2018) 
have been widely used to investigate past (Lambeck et al., 2014; Lin et al., 2021), present (Frederikse et al., 2020; 
Hay et  al.,  2015) and future (Caron et  al.,  2018; Love et  al.,  2016) sea-level change problems. Within GIA 
modeling, a key parametric uncertainty relates to poorly constrained ice histories, which not only reduces our 
confidence in understanding past sea-level change but also limits our ability to robustly project future sea-level 
variation due to the ongoing GIA effects associated with past glacial cycles.

A commonly used approach to reduce ice history uncertainty involves performing data-model comparisons with 
geological data that relate to ice-sheet history: either directly for example, geomorphological evidence of past 
glaciation, or indirectly such as RSL records. Due to the sparse and noisy nature of geological records, a range of 
plausible ice-sheet histories may be compatible with the observations, and a robust study often requires testing a 
large number of these to explore what can be and cannot be constrained (Briggs et al., 2014; Tarasov et al., 2012). 
However, it is computationally expensive to solve the complex physical equations required to perform data-model 
comparison. An effective way to mitigate this difficulty is to build a statistical model that mimics the behavior of 
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problem by building a deep-learning-based GIA emulator that can mimic the behavior of a physics-based GIA 
model while being computationally cheap to evaluate. Assuming a single 1-D Earth rheology, our emulator 
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emulator, two illustrative applications related to the calculation of barystatic sea level are provided for use by 
the sea-level community.

Plain Language Summary Piecing together the history of ice sheet change during past glacial 
cycles is not only important for understanding past sea-level change but also for predicting how ongoing glacial 
rebound contributes to future sea-level change. Traditionally, a physics-based “sea-level model” is used to 
predict the sea-level change associated with a particular reconstruction of past ice sheet change and compare 
the results with geological records of past sea level. However, a fundamental limitation of this approach is 
the need to compute sea-level change for a large number of plausible ice histories, which is often prohibited 
by the computational resources required to repeatedly solve the complex physical equations. In this paper, we 
describe a machine-learning-based statistical model that can mimic the behavior of a physics-based sea-level 
model. This statistical model is computationally cheap and we demonstrate that it is able to accurately predict 
global sea-level change for a suite of 150 “unseen” ice histories. Our statistical model predicts sea-level change 
100–1,000 times faster than a physics-based model, making it an ideal tool for investigating and improving our 
understanding of global ice sheet change.
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the physics-based simulator but is computationally cheap to run (Reichstein et al., 2019). Rather than solving the 
physical equations exactly, these “statistical emulators” learn how the system behaves based on a (comparatively) 
small set of examples, and use this to predict what the simulation would output in other scenarios.

The concept of emulation (also known as “surrogate modeling”) is not particularly new (Sacks et al., 1989), but 
recent advances in machine learning have greatly expanded its scope and application (Reichstein et al., 2019). 
Recent studies have built statistical emulators to quantify the impact of basal melt on dynamic ice-sheet model 
behavior (Berdahl et al., 2021) and to investigate how different CO2 emission scenarios affect ice-sheet model esti-
mates for future sea-level rise (Edwards et al., 2021). For sea-level research, although Tarasov and Peltier (2005) 
and Tarasov et al. (2012) created a neural-network-based emulator that can predict RSL chronologies based on 
a set of glacial systems model parameters, there is currently no end-to-end GIA emulator that can predict global 
RSL variation history based on arbitrary ice models. In this study, we document a proof-of-concept attempt to 
build an end-to-end Graph neural network based EmulatOR for GIA (GEORGIA) that can be used to rigorously 
explore global ice history uncertainty.

2. Methodology
Our goal is to build a statistical emulator that can predict global RSL variation based on a given global ice history 
from 25 ka BP to present. This can be treated as a supervised regression problem that maps the statistical rela-
tionship between input and output based on example input-output pairs generated by a physics-based GIA model. 
Below, we describe the example data generation, data pre-processing, and the methods used to build and validate 
our emulator.

2.1. Training Data

To provide example input-output pairs for training our emulator, we use a physics-based GIA model to calcu-
late global RSL variation based on a collection of ice sheet reconstructions. The physical model we use is a 
gravitationally self-consistent GIA model that accounts for shoreline migration and Earth rotational feedback 
(Kendall et al., 2005; Milne & Mitrovica, 1996; Mitrovica et al., 2005). The solid Earth is represented by a spher-
ically symmetric Maxwell body consisting of an elastic lithosphere, and an upper and lower mantle extending 
to 670 km, and from 670 km to the core-mantle boundary, respectively. The GIA model calculates RSL change, 
caused by land deformation and the geoid response to ice-water mass redistribution, by solving the sea-level 
equation (Mitrovica et  al.,  2005) using a spherical harmonic truncation of degree and order 256. The elastic 
and density structure of the Earth model is derived from the preliminary reference Earth model (Dziewonski & 
Anderson, 1981). Because the major focus of this study is to thoroughly sample ice history uncertainty, we do 
not incorporate Earth model parameter variation within the input data for our emulator. Instead, we adopt one 
specific Earth rheology that has a lithospheric thickness of 71 km and an upper and lower mantle viscosity of 0.3 
and 70 × 10 20 Pa s respectively (the “low-viscosity” Earth model scenario from Lambeck et al. (2014)).

One key task when building a GIA emulator is to generate a training database which evenly covers a wide range 
of possible deglaciation trajectories. We achieve this by collecting a wide range of ice history models for four 
different regions: North America (including Greenland), Eurasia, Antarctica, and all other regions with mountain 
glaciers (including Patagonia), and sampling the spatio-temporal variability between different reconstructions. 
In total, we use four global ice models that predict ice-sheet evolution in the four regions (Gowan et al., 2021; 
Lambeck et al., 2014; Peltier, 2004; Peltier et al., 2015), along with four North American (Gowan et al., 2016; 
Han et al., 2021; Roy & Peltier, 2018; Tarasov & Peltier, 2003; Tarasov et al., 2012), four Eurasian (Abe-Ouchi 
et al., 2013; Clark et al., 2021; Han et al., 2021; Patton et al., 2016, 2017; Tarasov et al., 2014) and three Antarctic 
(Argus et al., 2014; Briggs et al., 2014; Whitehouse, Bentley, & Le Brocq, 2012; Whitehouse, Bentley, Milne, 
et al., 2012) ice models. Because these ice models are reconstructed based on different principles (e.g., thermo-
mechanical ice modeling, GIA modeling, and the interpolation of glacial geomorphological data), they provide 
good coverage of possible ice-sheet deglaciation uncertainty. Detailed information about each ice model is given 
in Table S1 of the Supporting Information S1. We resample all the ice sheet reconstructions into a standardized 
format with 26 time slices (from 25 to 0 ka at 1 ka intervals) and spatial coverage corresponding to 256° spherical 
harmonic truncation, using linear interpolation as necessary. Because a GIA model is forced by ice thickness 
change rather than total ice thickness, we express all ice models in terms of ice thickness relative to present.
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Using these standardized ice sheet reconstructions as building blocks, we generate a suite of randomized, 
synthetic ice histories that span the range of plausibility. We employ two main methods to systematically sample 
the spatio-temporal variability across different reconstructions: random combination and weighted principal 
component analysis (wPCA). The random combination method samples the variability within the range bounded 
by previous reconstructions (Figure 1a), while the wPCA approach samples out-of-boundary variability, with two 

Figure 1. Illustration of the methods used to generate random synthetic ice histories from previous ice sheet reconstructions. 
(a) Random combination method, which consists of three randomized sampling procedures that reflect temporal (random 
selection and sliding) and spatial uncertainty (random selection and combination) in the underlying ice sheet reconstructions. 
(b) Weighted Principal Component Analysis method, which is implemented by calculating the mean ice sheet morphology 
and principal components of all time slices. From these, random ice sheet morphologies are generated via linear combination 
of the randomized principal components using two different temporal treatments of the random factor xi(t), which is 
illustrated by the equation with an asterisk. A detailed description of this equation can be found in Text S2 of the Supporting 
Information S1. The resulting synthetic random ice histories are shown in the bottom panel. All examples shown here are for 
the North American Ice Sheet, but the same approach was used to sample the Antarctic and Eurasian Ice Sheets, as well as 
mountain glaciers, to create a synthetic global ice history.
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different strategies employed to account for long-term (e.g., grounded ice volume at the Last Glacial Maximum, 
Simms et al., 2019) and short-term (e.g., Meltwater Pulse 1A; Deschamps et al., 2012; Lin et al., 2021) temporal 
variability (Figure 1b). We provide a brief summary of these approaches here, with a detailed description given 
in Texts S1 and S2 of the Supporting Information S1. The random combination method creates 500 synthetic ice 
histories by linearly combining different ice models into a new model. We randomly select 2–6 ice models for 
each region (i.e., random selection in Figure 1), and randomly translate each in time (younger or older) in order to 
sample the temporal uncertainty. The new ice model is calculated to be the weighted average of the selected ice 
models, with the details determined using a set of random weighting factors. The second approach uses wPCA 
to extract important ice morphological patterns (i.e., principal components; PCs) from different ice models. A 
weighting scheme is applied to account for the spherical geometry of the Earth, which means that grid cells at 
different latitudes cover different areas. Using the extracted PCs, 1,000 synthetic ice histories (500 for each strat-
egy to temporal uncertainty) are generated by adding a random linear combination of the PCs to the mean ice 
history (Figure 1b; details in Text S2 of the Supporting Information S1).

After obtaining 1,500 synthetic ice histories for each region, we create global ice models by randomly selecting 
ice models for each region, with the result that one global ice model may contain regional ice histories generated 
by several different statistical methods. In total, we create 1,500 synthetic global ice histories. For each we then 
simulate global RSL history from 25 ka to present, as described above. Because we express the input in terms of 
ice thickness relative to present, the modern ice thickness layer is a spatially uniform layer with all zero values, 
which contains no information. Therefore, we replace this layer with modern topography, which is important for 
calculating the continental levering and ocean siphoning processes (Mitrovica & Milne, 2002). Before being used 
to train a GIA emulator, we normalize all input and output data to ensure zero mean and unit standard deviation 
(more information in Text S3 of the Supporting Information S1). The 1,500 normalized input-output pairs are 
divided into training (80%), validation (10%) and testing (10%) sets.

2.2. Statistical Emulator

Using this training set, we now wish to build an emulator that can map ice history into RSL change. This is a 
typical machine learning problem, for which a convolutional neural network is commonly used. However, classi-
cal convolutional neural network algorithms are designed to perform convolution and pooling operations within 
Euclidean space, which is not appropriate when representing geographical data such as ice or RSL history on a 
spherical Earth. Therefore, we use a graph-based spherical convolutional neural network (SCNN) algorithm that 
correctly implements convolution and pooling operations on data within a spherical manifold. We employ a Hier-
archical Equal Area isoLatitude Pixelization (Healpix) scheme to build this spherical manifold, which produces 
a subdivision of a spherical surface where every pixel covers the same surface area (Gorski et al., 2005). This 
is  an ideal property for emulating GIA processes because it ensures that input ice thickness is proportional to the 
ice load applied to each grid cell. Furthermore, the SCNN algorithms used in this study use a graph filter that 
extracts information from nearby grid cells in a way that only depends on the distance between the grid centers, 
not on the direction. This ensures that information is rotationally equivariant. In other words, rotating the input 
ice history will result in an equivariant output RSL prediction. Rotational equivariance is desirable because it 
can significantly reduce the data sampling complexity. Underpinning these SCNN algorithms is a 3-layer U-Net 
(Ronneberger et al., 2015), a neural network architecture that is widely used in regression and image segmenta-
tion problems (Lai et al., 2020; Yao et al., 2018)—see Text S4 in Supporting Information S1 for more details. For 
this study, we adopt the SCNN algorithms from the DeepSphere package (Defferrard et al., 2019, 2020), which 
has been successfully used in cosmological and weather prediction applications (Perraudin et al., 2019).

The emulator structure is governed by various hyperparameters, whose values influence the final emulation 
performance. Here we provide information on some key hyperparameters used in this study; a full list of the 
hyperparameters along with selection criteria are given in Text S5 of the Supporting Information S1. A hyperpa-
rameter that should be noted is the Healpix sampling resolution. To achieve relatively fast emulation, we use a 16° 
Healpix sampling resolution (n = 3,072), corresponding to ∼3.66° spatial coverage. All standardized input and 
output fields are interpolated onto 16° Healpix grids. Another essential hyperparameter for SCNNs is graph filter 
size, which determines the number of nearest-neighborhoods included in each convolution process (i.e., spatial 
scale length). This is important for GIA problems because the solid Earth deformation signal tends to be long 
wavelength. For example, the peripheral bulge formed in response to loading of the North American Ice Sheet 
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can extend over 3,000 km, to places like Barbados. In this study, we use a graph filter size of 60, corresponding 
to ∼1,780 km radius.

We use a mean square error (MSE) loss function to quantify the misfit between predictions and observations and 
iteratively update model parameters by backpropagation (Goodfellow et al., 2016). Because the MSE loss func-
tion focuses on the misfit of each single grid point, we include two extra metrics to assess the overall quality of 
the emulation results: peak signal-to-noise ratio (PSNR, Korhonen & You, 2012) and structural similarity index 
measure (SSIM, Brunet et al., 2011). Both of these metrics are widely used to measure the quality of image and 
video compression (Huynh-Thu & Ghanbari, 2008; Wang & Bovik, 2009), with formal definitions given in Text 
S6 of the Supporting Information S1. A high PSNR value indicates low noise level, and vice versa, while the 
SSIM provides a similarity metric between 0 and 1 where a higher value indicates better emulation quality. Note 
that the SSIM is not directly correlated with either MSE or PSNR, and so can provide an independent assessment 
of output quality (Hore & Ziou, 2010). We also evaluate model performance by calculating the mean absolute 
error (MAE). This metric is arguably more directly interpretable than the root-mean-square error, which was 
used during emulator training for its mathematical convenience. To produce predictive uncertainty estimates, we 
adopt an ensemble learning approach, which is proved to be an efficient tool for estimating neural network based 
emulator uncertainty (Lakshminarayanan et al., 2017). The approach involves training an ensemble of 30 alterna-
tive SCNNs. The SCNNs all have the same model structure but they are initialized using different model weights 
and they use different training examples. The 1,200 training examples are constructed by randomly sampling our 
training and validation sets (the testing set remains unseen for all SCNNs). The variance between the 30 SCNNs 
represents GEORGIA's predictive uncertainty.

Finally, to assess the value of the SCNN model, and explore whether it is able to capture significant internal 
relationships between inputs and outputs, we also create a basic kernel model. When given previously unseen 
inputs, this model simply finds the five most similar inputs from within the training set, and averages their known 
outputs. The misfit of this approach serves as a baseline for assessing the performance of the SCNN-based 
emulator.

3. Results and Discussions
3.1. Emulator Performance

Using the trained SCNN-based emulator, which will be referred to as GEORGIA, we predict RSL variation 
results for 150 unseen testing examples. GEORGIA out-performs the kernel-based method on all evaluation 
metrics. Specifically, GEORGIA achieves an order of magnitude lower MSE (0.946 vs. 29.53 m 2) and MAE 
(0.54 vs. 5.84 m) along with distinctly higher PSNR (61.11 vs. 46.18) and SSIM (0.9995 vs. 0.9864) values. 
This indicates that the SCNN-based algorithm is able to capture the complex correlation between ice history 
and GIA-induced RSL history better than the baseline approach of finding similar training set pairs. The low 
MSE and MAE values, and the high PSNR and SSIM values, suggest a high-level of similarity between the RSL 
predictions generated by the emulator and the physical-based model. The 0.54 m MAE emulation error is also 
smaller than 87.8% of the 2σ RSL reconstruction uncertainties in a comprehensive sea-level database (Hibbert 
et al., 2018), suggesting a sufficient emulation accuracy.

The spatial and temporal distributions of emulation error between the physical and statistical models are show 
in Figure 2. The emulation MAE is strongly heterogeneous in space (Figure 2a), with near-field regions showing 
large errors of up to 4 m, while errors in far-field regions (i.e., far from previous ice-sheet margins) are mostly 
below 0.5 m. This spatial heterogeneity reflects the spatial variability in the training set (Figure S1d in Supporting 
Information S1), where near- and far-field RSL standard deviations can reach up to 500 and 25 m, respectively, 
indicating that the average emulation error is 1%–2% of the training variability.

Temporally, emulation MAE is generally higher during the early stages of deglaciation (Figure 2b), when RSL 
is significantly different from present-day values (Figure 2b). Emulation MAE peaks between 20 and 10 ka BP 
due to the rapid unloading of the major ice sheets, and it decreases during the Holocene as global mean sea-level 
gradually approaches modern levels. Figures 2d–2f show physics-based RSL predictions along with the emula-
tion error at three typical near-, intermediate- and far-field sea-level sites. It is clear that although RSL predic-
tions differ significantly between these sites, the temporal distributions of the emulation error follow an identical 
near-stationary trend, with larger emulation error occurring before the Holocene, similar to the global average 
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pattern shown in Figure 2b. Considering this near-stationary and white-noise-like error distribution, we suggest 
that GEORGIA is able to capture the vast majority of correlation between ice history and the global RSL field.

Figure 2c provides an overall comparison between the physics- and statistical-based RSL predictions. It is clear 
that GEORGIA can well approximate the physics-based GIA model with a 0.9998 coefficient of determination 
(R 2) and no systematic error. 95.7% of the emulation results have a MAE of less than 2 m. In far-field regions, 
over 99% of the emulation results have a MAE of <2 m while 95% have a MAE of <1 m.

To assess the performance of GEORGIA's predictive uncertainty estimates, we compare them with emulation 
errors on unseen testing examples (Figure S4 in Supporting Information S1). The 3σ predictive uncertainties 
are mostly larger than the emulation errors with 99% of emulation predictive intervals (i.e., ±3σ) being able to 
encompass 94.5% of ground truth values. GEORGIA's predictive uncertainties also agree well with the temporal 
trend of emulation errors (Figure 2b). These observations suggest our uncertainty estimates are robust. However, 
for some extreme cases (e.g., the 97.5%–99.5% percentile of the emulation error in Figure  2b), GEORGIA's 
predictive uncertainties may slightly underestimate the emulation errors. Therefore, we show the 97.5% percen-
tile of the emulation errors across the 150-member testing set at 9 different time steps (Figure S5 in Supporting 
Information S1) as a conservative estimate on emulation uncertainty, which can reach up to 14/3.5 m in the near/
far field, corresponding to 5%–8% of the training variability.

Although GEORGIA contains ∼33.8 million trainable parameters, it only takes 3.7 s to emulate RSL change 
through the last deglaciation on a Central Processing Unit (Intel® CoreTM i9 14 Core Processor). The computa-
tion time decreases to 0.25 s when using a Graphics Processing Unit (8GB NVIDIA GEFORCE RTX 3070 Ti). 
This is 100–1,000 times faster than the computation time of our physical forward GIA model (see Section 2.1), 

Figure 2. Emulator performance for the 150-member out-of-sample testing set. (a) Temporally averaged spatial distribution of emulation error, locations here refer 
to typical near-, intermediate- and far-field sites: (So) Southeastern Hudson Bay; (Ba) Barbados and (Se) Seychelles. (b) Mean and confidence intervals of spatially 
averaged temporal variation of the emulation error and predictive uncertainty, where colored areas indicate the emulation error confidence interval and dashed/dotted 
lines denote the upper range of 95/99% confidence interval of predictive uncertainty produced by GEORGIA; CI = confidence interval. (c) 2-D histogram comparing 
the ground truth and emulator predictions. R 2 denotes the coefficient of determination. The subplot shows the cumulative probability of the absolute error. (d–f) RSL 
predictions generated using the physics-based Glacial isostatic adjustment model for the 150-member test set, with emulation errors and time shown on the y and x axes 
in the subplots, at Southeastern Hudson Bay, Barbados and Seychelles, respectively.
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which takes 6 min to run three iterations (necessary to initialize palaeo topography), and where each iteration 
comprises 26 time steps at 256° spherical harmonic resolution. Considering the good emulation accuracy above, 
this emulator allows us to perform 100–1,000 times more simulations within a given computational budget—
potentially making it feasible to employ a range of ensemble-based techniques for parameter estimation and 
uncertainty quantification.

3.2. GEORGIA Generalizability

A key question for any statistical emulator is generalizability: how does the emulator perform for arbitrary unseen 
inputs? For neural network based emulators, previous studies suggest that although they perform well in interpo-
lation problems (GEORGIA performs well for unseen ice histories that are taken from a similar distribution to 
our training set, see Section 3.1 and further examples in Text S7 of the Supporting Information S1), they cannot 
meaningfully extrapolate non-linear functions (Goodfellow et al., 2016; Xu et al., 2020). In other words, while 
GEORGIA is effective for ice histories that are similar to those in our training set, GEORGIA may produce 
meaningless output if an ice sheet reconstruction has been generated using an approach or philosophy that is 
very different to the approach used to generate the ice history models included in our training set. This drawback 
means that in order to emulate a specific GIA problem, a well-designed training set is a prerequisite. Although 
our training set covers a wide range of possible ice histories by thoroughly sampling the spatio-temporal vari-
ability of previous ice-sheet reconstructions, this cross-reconstruction variability cannot describe the ice thick-
ness uncertainty associated with poor knowledge of ice-sheet dynamical processes (e.g., large uncertainty in ice 
stream areas, Albrecht et al., 2020; Pittard et al., 2022; Tarasov et al., 2012) and ice margin chronology (Dalton 
et al., 2020). Therefore, incorporating more modeling results from physically consistent ice sheet models that are 
constrained by empirical geomorphological evidence will be an important forward step to further improve the 
generalization of GEORGIA.

3.3. Emulator Applications

Using GEORGIA, global RSL variation from 25 ka BP to present can be rapidly emulated using any ice history 
that is similar to our training set. Because our training set provides good coverage of possible deglaciation scenar-
ios identified in previous studies, GEORGIA can be used as a substitute for a physics-based GIA model in many 
applications. Additionally, benefitting from a modern machine learning framework, GEORGIA can be used by 
other researchers with minimum requirements for programming experience or computational resources. Here, 
we provide two example GEORGIA applications, namely; (a) calculating the ice-sheet contribution to global 
Barystatic sea level (BSL); and (b) mapping BSL in space and time.

3.3.1. Barystatic Sea Level Calculator

BSL describes the uniform shift of the global ocean surface due to ice-ocean mass exchange in the absence 
of gravitational effects and Earth deformation. It is a direct measure of global grounded ice volume change 
through time, and hence it is important for calibrating isotopic proxies and constraining ice-sheet variation history 
(Waelbroeck et al., 2002). However, for palaeo ice-sheet modeling studies, there is no straightforward way to 
calculate the ice-sheet contribution to global BSL without running a GIA model, due to the complexities associ-
ated with changes in global ocean area and topography (which impacts the grounded-floating ice transition). As 
a result, numerous studies (e.g., Gomez et al., 2020; Patton et al., 2017) only present their ice modeling results in 
terms of ice volume or an ice volume equivalent sea-level contribution (i.e., ice volume divided by modern ocean 
area). Based on our physics-based GIA modeling results, this latter approach overestimates the ice sheet contri-
bution to barystatic sea-level at 21 ka BP by 3.34 m (0.8–4.3 m depending on the adopted ice history), which is 
a non-negligible signal to consider.

Using GEORGIA, we provide a global BSL calculator that accounts for shoreline migration and the impact 
of solid Earth deformation on ice flotation (with detailed theory given in Text S8 of the Supporting Infor-
mation S1). To test the accuracy of this GEORGIA-based BSL calculator, we compare its predictions to 150 
examples of deglacial BSL history obtained using the physics-based model (i.e., those comprising the testing 
set). The results show emulation error (MAE) of 0.04 m. Thus, GEORGIA is a suitable tool to rapidly estimate 
the ice-sheet contribution to global BSL change, for example, as predicted by ice dynamic or general circulation 
models.
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3.3.2. Barystatic Sea Level Map

A barystatic sea-level map identifies locations and times where local RSL 
approximates global BSL. Such sites are targeted by sea-level scientists to 
provide a close constraint on global ice volume. Because of spatially and 
temporally variable GIA-related perturbations to the gravity field and solid 
Earth surface (i.e., the non-barystatic signal), producing a BSL map requires 
robust estimates of the non-barystatic contributions to RSL. The detailed 
theory for calculating a BSL map was described in Milne and Mitrovica (2008) 
where they conclude that ideal locations to reconstruct palaeo BSL are where 
local RSL: (a) is relatively insensitive to plausible ranges in GIA model 
parameters (i.e., global ice history and solid Earth rheology); (b) closely 
approximates the barystatic value. Milne and Mitrovica  (2008) provide a 
series of BSL maps at different time slices, based on GIA modeling results 
that use two ice histories (Bassett et al., 2005; Peltier, 2004), each paired with 
162 plausible sets of Earth parameters. These maps have been used by the 
field community to target locations that approximate BSL during different 
parts of the deglacial period (e.g., Sefton, 2020; Woodroffe et al., 2015).

A major limitation of Milne and Mitrovica (2008) is that they only sample 
two ice models, and hence they are not able to thoroughly quantify the impact 
of ice history uncertainty on the resulting BSL estimates. Because GEOR-
GIA has high computational efficiency while remaining sufficiently accu-
rate for many applications (Section  3.1), it is an ideal tool for testing the 
sensitivity of the BSL map to a large ensemble of ice histories. To produce 
a BSL map that represents ice history uncertainty, we emulate the global 
non-barystatic signal (i.e., RSL—BSL, neglecting any sterodynamic effects) 
for 10,000 randomly generated ice histories using the same methods intro-
duced in Section 2.1. Based on these emulation results, we calculate the prob-
ability that global RSL lies within 3 and 1 m of the barystatic value at 21 and 
6 ka BP respectively (Figure 3).

Because uncertainty in the results of Milne and Mitrovica (2008, see their 
Figures 6 and 7) largely reflects the uncertainty associated with radial mantle 
viscosity structure, combining their results with ours enables us to identify 
regions where, although RSL approximates the global BSL value with mini-
mal sensitivity to the choice of radially varying Earth model, it is sensitive 
to the choice of ice history (e.g., offshore regions near eastern Australian at 
21 ka BP). After excluding such regions, we conclude that the southern Indian 
Ocean and southern Tasman Sea (close to south-western New Zealand) are 
ideal regions to reconstruct global BSL at 21 ka BP because it is highly likely 
that the non-barystatic signal here will be lower than 3 m, and predictions are 
insensitive to the Earth model choice (Milne & Mitrovica, 2008). Although 
there is also a low non-barystatic signal shown in the mid-northern Pacific 
and mid Atlantic regions, these sites are not suitable for reconstructing global 
BSL because RSL is highly sensitive to the choice of Earth rheology (Milne 
& Mitrovica, 2008). For the mid-Holocene, our map shows a broadly simi-
lar pattern to Milne and Mitrovica  (2008), where optimal regions are the 
western and eastern Indian Ocean, the mid-northern Pacific Ocean and the 
mid-southern Atlantic Ocean. Meanwhile, agreeing with the results from 
Milne and Mitrovica (2008), the mid-southern Atlantic is not an ideal region 
for mapping mid-Holocene BSL.

Figure 3. Barystatic sea-level maps based on 10,000 emulation results. (a) 
Probability that local RSL lies within 3 m of the barystatic value at 21 ka 
BP. (b) Probability that local RSL lies within 1 m of the barystatic value at 
6 ka BP. (c) Temporal variation of the non-barystatic signal at six different 
sea-level sites. Note the confidence intervals shown here only reflect the 
uncertainty associated with combining 10,000 different ice histories with one 
Earth rheology. The non-barystatic signal indicates the difference between 
GIA-induced RSL change and Barystatic sea level without considering any 
sterodynamic effects. The area between the two black dashed lines represents 
the region where the non-barystatic signal is smaller than 3 m. Locations in (a) 
refer to (from west to east): Tahiti (Ta), Barbados (Ba), Seychelles (Se), Sunda 
Shelf (Su), Bonaparte Gulf (Bo) and Huon Peninsula (Hu).
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In Figure 3c, we show the impact of ice history uncertainty on the temporal evolution of the non-barystatic signal 
at six locations that are commonly used in sea-level studies (e.g., Lin et al., 2023; Webster et al., 2018; Woodroffe 
et al., 2015). Our results show that variations in the spatial and temporal distribution of the global ice sheets 
have a major effect on the magnitude of the non-barystatic signal, and a minor effect on the overall trend—the 
latter depends more on the Earth rheology, which we do not vary in this experiment. Regarding the six selected 
sea-level sites, as suggested in Milne and Mitrovica (2008), we confirm that the Seychelles is a particularly good 
site to map global BSL history because it has a low uncertainty, minor non-barystatic signal throughout the last 
deglaciation (Figure 3c). Although the Huon Peninsula is also predicted to have a small non-barystatic signal, and 
the uncertainty associated with ice history is small, this site is highly sensitive to the choice of Earth rheology 
(Milne & Mitrovica, 2008). In general, similar to the findings of Milne and Mitrovica (2008), who investigated 
the impact of the choice of Earth model on the non-barystatic signal, we find that uncertainty associated with 
poor knowledge of global ice history can reach up to 15/6 m at 21/6 ka BP, indicating that ice history uncertainty 
is an essential factor to consider when mapping global BSL history.

3.4. Future Development

In this study, we demonstrate that SCNNs can emulate RSL for a range of ice histories, assuming one specific 
Earth model. However, Earth rheology is a highly uncertain parameter that can result in hundreds of meters of 
RSL uncertainty in near-field regions and tens of meters in far-field regions. Therefore, an ideal GIA emula-
tor should be able to sample ice history and Earth rheological properties simultaneously. One way to achieve 
this would be to incorporate Earth rheological parameters into the input data or a particular layer of the neural 
network. This would enable solid Earth rheology information to be considered when performing the convolu-
tion operations. While this is conceptually straightforward, it significantly complicates the computational task 
of constructing an emulator: considerably more training data would be required to fully sample the range of 
possibilities, and the relationship between model inputs and outputs would increase in complexity. Further inves-
tigation is required to develop an efficient and effective implementation of this concept, but as GEORGIA is an 
open-sourced model built upon a popular machine learning framework (PyTorch, Paszke et al., 2017), it is easily 
scalable for any further developments.

4. Conclusions
Using a graph-based SCNN, we document the first attempt to build a statistical GIA emulator (GEORGIA) that 
can approximate global RSL variation history based on a given deglacial ice history. GEORGIA predicts RSL 
history 100–1,000 times faster than a physics-based GIA model, with a MAE of 0.54 m. Due to its low compu-
tation expense, it is a suitable tool for performing large-ensemble investigations of ice history uncertainty. By 
providing example applications of GEORGIA—calculating the ice-sheet contribution to global BSL change and 
creating a BSL change map—we demonstrate that GEORGIA will be a useful tool for improving our understand-
ing of global ice and sea-level variation histories.
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