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Introduction

Sections S1 and S2 provide additional details regarding the generation of neural network

training sets and the neural network training procedure. Section S3 is concerned with

the 3-D Green’s functions database for the Whittier-Chino fault system that is made

available as a part of this publication. Table S1 provides an overview over the source
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parameterisation and according prior distributions as described in the manuscript. Table

S2 gives the 1-D layered Earth model used to calculate approximate first arrival times (see

Section S1). Figure S1 provides results related to the neural network training procedure,

Figures S3 and S4 provide additional visualizations regarding the dataset described in

Section S3. Figure S5 shows a snapshot of a wavefield synthesized using the Green’s

functions database and Figures S6 to S10 provide supplementary results for the Chino

Hills source inversion scenario discussed in the manuscript.

Section S1: Neural network training using a pre-computed database of Green’s

functions

The neural network based approach requires us to obtain a training set of synthetic

waveform data and corresponding source parameter vectors. However, solving the elastic

wave equation in a realistic 3-D heterogeneous medium, as done in this article, is com-

putationally intensive and limits the amount of simulations that can be performed with

a given amount of CPU time. We therefore adopt a two-stage approach for generating

neural network training sets in order to use available computational resources optimally.

Firstly, a set of J source locations {xj = (lat, lon, depth)j} is drawn at random from a

suitable prior distribution, potentially acknowledging any prior knowledge we might have

on known fault traces and past seismicity. Subsequently, for a receiver located at ξk and

for the j-th source location, unit Green’s functions Gijk are calculated for the unit moment

tensors M̂i = (δ1i, δ2i, δ3i, δ4i, δ5i, δ6i), where i = 1 . . . 6 and δhi is the Kronecker delta. The

l-th component of the synthetic seismogram for moment tensor M corresponding to the

j-th source location at the k-th receiver can then be computed according to equation (1)
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of the main article. We thus have the ability to compute the seismogram corresponding

to any moment tensor located at any one of the points xj.

In order to obtain a neural network training set, we pick N source locations from the

set {xj} at random, where typically J < N , i.e. the same location may appear multiple

times. Subsequently, we draw N random moment tensors {Mn} and half-durations {τn}

according to a prior distribution and calculate synthetic seismograms using the set of pre-

computed unit Green’s functions according to equation (1) of the main article. Moreover,

random noise is added to the synthetic waveforms in order to simulate observational noise

and potential modelling errors. Data vectors d for neural network training are then formed

by selecting time-windows, concatenating all components at all receivers and applying a

non-linear input transformation in the same way as in Käufl et al. [2015]. Source and

corresponding data vectors are combined into the dataset D = {(m,d)n}.

All time windows start at the onset time t0, i.e. the time at which the first arrival of

seismic energy is detected by the first receiver in the receiver network. Various approaches

exist that allow real-time triggering, such as monitoring variations in short-term/long-term

signal averages. For simplicity, when working with the synthetic dataset D, we estimate t0

by calculating P wave arrival times Tjk for each source-receiver pair using the TauP toolkit

[Crotwell et al., 1999] in a simplified 1-D average Earth model (see Table S2). These are

then distorted by random noise drawn from the uniform distribution U(−δt0, δt0) in order

to desensitize the neural network with respect to errors in the determination of t0 on the

order of δt. Here we choose δt0 = 3s to take into account that the 1-D P wave arrivals are

only poor estimates of the true onset times in the 3-D model, and to account for potential
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errors in the onset times determined for the real observations. This may potentially be

done using an automatic picking algorithm, such as a STA/LTA trigger [e.g. Trnkoczy ,

2002]. For the observed Chino Hills dataset used throughout the main article, we have

picked first arrival times manually. Note that the amount of perturbation δt0 has only

little influence on the posterior uncertainties, since the relative timing of the signal at

different stations is not affected (see Figure S10).

We redraw a new dataset D, as described above, several times during the training

procedure, in order to increase the total amount of examples presented to the network

and to obtain a more thorough sampling of the prior distribution of moment tensors and

source-time functions. This measure has a positive influence on the network performance

(see Figure S1). A similar effect could have been achieved by increasing the total number

of examples N , but at the cost of significantly increased computational and memory

requirements for the training procedure. The next section gives an overview over the

network training procedure.

Section S2: Outline of the neural network training procedure using mini-batch

training

During the neural network training procedure an iterative optimization algorithm is

used to minimize the network prediction error

E[Dtr] = −
∑
n

ln p [(mk)n|dn,w] , (1)

where the sum runs over all examples in the training set Dtr and p [(mk)n|dn,w] is the

likelihood of the the network parameter vector w for the n-th training pattern (m,d)n.
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See Bishop [1995] and Käufl et al. [2014] for a detailed motivation and description of the

training procedure for feed-forward neural networks.

During training the error of a second independent validation dataset Dval is monitored

and after a pre-defined number of iterations has been reached the training procedure is

stopped and the weight vector is chosen that maximizes the likelihood of the validation

data set, i.e. that minimizes an equation similar to (1) for the validation set.

As mentioned in the previous section, we regenerate the training set Dtr several times

during the training procedure—a practice also known as mini-batch training. Here, the

goal of mini-batch training is to limit the memory requirements and computational cost for

each training iteration, which both scale linearly with the number of training set examples,

while at the same time maximizing the amount of prior samples that can be presented

during training. At iteration nouter, we draw N source vectors from the prior distribution,

as described in Section 1. Subsequently, we train the given network for ninner iterations

and repeat these two steps until a pre-defined maximum number of overall iterations is

reached.

Figure S1 shows a comparision of 15 training runs that have been performed without

training set re-gerneration and 15 runs that use mini-batch training as described above.

As can be seen the minimum validation set errors are consistently lower for the networks

trained using mini-batches for the same number of total iterations. In both cases the

training sets consisted of 200000 examples. The training set has been regenerated 10

times in case of the mini-batch runs, which yields a total number of 2 Mio. prior samples,

that are presented to the network, as opposed to 200000 samples in the case where a fixed
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dataset is being used. Also the random-noise component that is added to each synthetic

data vector, is redrawn every time the training set is regenerated.

Section S3, Description of the 3-D Green’s functions database for the Whittier-

Chino fault system made available as a part of this publication.

We have generated a 3-D Green’s functions database for the Whittier-Chino fault system

for a set of 150 source locations located on and close to the fault. This database is made

available to the public as a part of this paper and may aid future research on the regional

seismicity in the Los Angeles basin. In the following, we provide details on the generation

of the database.

The Whittier-Chino fault system consists of two northwest-trending sections with seper-

ate surface traces, which intersect at depth due to their opposing dip angles. See Figure

S2 for the regional topographic context, and Figure S3 for a 3-D representation of the fault

system taken from the Community Fault Model Version 4 (CFM) for Southern California

[Plesch et al., 2007]. Note that two alternative representations for the interaction between

the two faults are present in the CFM, Figure S3 shows the option preferred by [Plesch

et al., 2007].

In order to obtain point source locations that follow the geometry of the fault sections,

we draw locations uniformly on an auxiliary plane fitted to the larger of the two sections,

the Whittier fault, as shown in Figure S3. The surface normal of the auxiliary plane is

hereby determined by least-squares minimization, which is equivalent to finding the right-

singular vector corresponding to the smallest singular value of the matrix containing

all vertices of the fault mesh. In order to obtain a more even distribution with the

D R A F T August 17, 2016, 12:15pm D R A F T
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relatively small number of locations, we generate random points on the plane using a

Sobol pseudo-random sequence. Subsequently we perturb each point in the direction of

the surface normal projected onto the X-Y plane by a random distance drawn from a

normal distribution with mean zero and whose standard deviation equals 5% of the total

fault length. This is in order to account for potential uncertainties in the fault orientation,

deviations of the actual fault geometry from the planar representation and the fact that

earthquakes may occur on hitherto unmapped subsections of the fault. The locations of

the resulting random source locations are visualized in Figure S3 as grey balls.

Subsequently, for each source location, we generate the 6 unit Green’s functions Gijkl

(see eq. 1 in the main text) for the 150 source locations and a set of 1866 existing

and virtual receivers in Southern California. Please find the full list of receiver names

and locations in the provided STATIONS file. The receiver distribution is visualized in

Figure S4. The synthetic displacement, velocity and acceleration waveforms of length

200 s are caluclated using SPECFEM3D in the tomographic California model CVMH

11.9 [Tape et al., 2009], in the domain 32.2◦ ≤ lat ≤ 36.8◦, −121.6◦ ≤ lon ≤ −114.4◦,

0 ≤ depth ≤ 400km. A time-step of 0.009 s is chosen and oceans, attenuation and gravity

are not taken into account for the simulations. A heaviside source-time function is used

and the resulting synthetic recordings are low-pass filtered using a cosine low-pass filter

with corner frequencies 0.4 and 0.5 Hz and down-sampled to 0.999 s sampling period using

integer decimation.

The data archive can be downloaded from http://www.geo.uu.nl/~jeannot/My_web_

pages/Downloads.html and is structured as follows: The main archive contains 150 sub-
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archives corresponding to the 150 source locations. Each sub-archive contains 6 folders

corresponding to the 6 unit moment-tensors, which in turn contain a DATA directory

holding SPECFEM3D input files, and an OUTPUT FILES directory containing the in-

dividual waveform files in SAC format. Note that the network code XX is used for the

stations of the virtual receiver grid.
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Figure S1. Improvement of the network performance by mini-batch training for parameters σ

(left) and depth (right). Networks for other parameters show a similar behaviour. Black curves

correspond to 15 neural networks trained w/o re-drawing the training set, red curves correspond

to 15 runs, where the training set has been regenereated from the prior every 150 iterations.

Filled circles indicate the validation error minima for each trace.
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Figure S2. Map of study region showing topography [SRTM, Farr et al., 2007]; see also Figure

1 of main article. Red triangles denote seismic stations used; blue star denotes the Chino Hills

earthquake.
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Figure S3. Whittier and Chino fault geometry taken from the Community Fault Model (CFM)

for Southern California [Plesch et al., 2007] (blue and grey mesh), a planar representation of the

Whittier fault (green) and the locations of 150 pseudo-randomly distributed source locations

(grey balls).

D R A F T August 17, 2016, 12:15pm D R A F T
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Figure S4. Real (red) and virtual (black) receiver locations at which synthetic displacement,

velocity and acceleration waveforms are stored.
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Figure S5. Snapshots of the vertical component surface velocity field for the synthetic example

of Figure 3 of the main article with a source half-duration of 6 s. Points in time are with respect

to origin time and correspond to the endpoints of the data windows of length 6 s, 15 s, 30 s and

45 s, respectively. Note that first arrivals are not clearly visible due to their small amplitudes.

The first P wave arrival calculated using a 1-D average model is at 7.6 s after origin time at the

closest receiver.
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Figure S6. Test set performance for networks using 6 s of waveform data. Axes and gray-scale

is the same as for Figure 2 in the main article.
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X - 16 KÄUFL ET AL.: SUPPORTING INFORMATION FOR PROB. 3-D POINT SOURCE INVERSION

−π/6 0 π/6

γ

0 π 2π

κ (strike)

−π/2 0 π/2

σ (rake)

0 0.5 1

h (cos(dip))

5 6.5 8
Mw

1.5 10.75 20

depth [km]

33.79 33.92 34.05

lat [◦]

−118.05 -117.81 −117.57

lon [◦]

0 15 30

τ [s]

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Information gain [nats]

Figure S7. Test set performance for networks using 15 s of waveform data. Axes and gray-scale

is the same as for Figure 2 in the main article.
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Figure S8. Information gain distribution of 10000 synthetic test set examples for 6s (blue),

15s (red) and 30s (black). The horizontal axis shows the information gain with respect to the

prior distribution DKL in nats. Higher values correspond to a more certain answer.
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Figure S9. Each panel shows marginal pdfs for the same synthetic example and 30s of

data, but for 10 different random noise realizations (additive observational noise and a random

perturbation of the onset time t0). Columns correspond to a different number of neural network

ensemble members, rows to the different source parameters. In particular in the case of the

lesser constrained parameters, the ensemble averaging helps to stabilize the results. Based on

this observation, we chose to work with 30 members.
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Figure S10. Information gain distribution for the synthetic test set under two different choices

of the random onset time perturbation δt0. Ideally, the neural networks would be invariant with

respect to small perturbations of the onset time t0 and the prediction accuracy should not depend

on the level of perturbation. This is the case except for parameter γ, where a smaller perturbation

seems to improve the posterior certainty on average. However, for this parameter the bulk of the

test set shows a very small information gain (< 1 nat) in both cases and we conclude that the

deterioration in prediction performance is acceptable.
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Table S1. Point source parameters and prior ranges.

Parameter Prior distribution∗ Description
γ U(−π/6, π/6) Non-DC component
κ U(0, 2π) Strike
σ U(−π

2
, π
2
) Rake

h U(0, 1) cos(dip)

Mw = logM0

1.5
− 10.7 U(5.0, 8.0) Moment magnitude,

lat see main text Centroid latitude [◦]
lon see main text Centroid longitude [◦]
depth see main text Centroid depth [km]

τ = a · 10−8M1/3
0 a ∼ N (1.05, 0.1) Half-duration

*U(a, b) denotes a uniform distribution on the interval [a, b]; N (µ, σ) is a normal distribution with mean µ and variance σ2.

Table S2. The 1-D layered crustal and upper mantle model used for the calculation of

1-D Green’s functions and first arrival times. For obtaining approximate P wave arrival times

and 1-D synthetic Green’s functions we have used a model, obtained by layer-wise averaging

the global 3-D crustal model CRUST1.0 [Laske et al., 2013] in the domain 32.2 ≤ lat ≤ 36.8,

−121.6 ≤ lon ≤ −114.4.

Layer Thickness [km] vp [km/s] vs [km/s] ρ [kg/cm3]

1 1.56 2.38 0.91 2.04
2 7.89 5.97 3.44 2.72
3 8.33 6.46 3.72 2.82
4 8.81 6.89 3.84 2.95
5 10000 (half-space) 7.94 4.42 3.28
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Käufl, P., A. Valentine, R. de Wit, and J. Trampert (2015), Robust and fast probabilistic source

parameter estimation from near-field displacement waveforms using pattern recognition, Bul-

letin of the Seismological Society of America, 105 (4).

Laske, G., G. Masters, Z. Ma, and M. Pasyanos (2013), Update on CRUST1.0 - A 1-degree

Global Model of Earth’s Crust, Geophysical Research Abstracts, 15, EGU2013–2658.

Plesch, A., J. H. Shaw, C. Benson, W. a. Bryant, S. Carena, M. Cooke, J. Dolan, G. Fuis,

E. Gath, L. Grant, E. Hauksson, T. Jordan, M. Kamerling, M. Legg, S. Lindvall, H. Magistrale,

C. Nicholson, N. Niemi, M. Oskin, S. Perry, G. Planansky, T. Rockwell, P. Shearer, C. Sorlien,

M. P. Suss, J. Suppe, J. Treiman, and R. Yeats (2007), Community Fault Model (CFM)

for Southern California, Bulletin of the Seismological Society of America, 97 (6), 1793–1802,

D R A F T August 17, 2016, 12:15pm D R A F T
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