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Robust and Fast Probabilistic Source Parameter Estimation from

Near-Field Displacement Waveforms Using Pattern Recognition

by Paul Kéufl, Andrew Valentine, Ralph de Wit, and Jeannot Trampert

Abstract The robust and automated determination of earthquake source parame-
ters on a global and regional scale is important for many applications in seismology.
We present a novel probabilistic method to invert a wide variety of (waveform) data
for point-source parameters in real time using pattern recognition. Inferences are made
in the form of marginal probability density functions for point-source parameters
and incorporate realistic posterior uncertainty estimates. The neural-network-based
method is calibrated using samples from the prior distribution, which are synthetic
data vectors, and corresponding sources located in a predefined monitoring volume.
Once a set of trained neural networks is available, inversions are fast with very mod-
erate demands on computational resources: an inversion takes less than a second on a
standard desktop computer. Uncertainties in the layered Earth model are taken into
account in the Bayesian framework and increase the robustness of the results with
respect to neglected 3D heterogeneities. Moreover, we find that the method is very
robust with respect to perturbations such as observational noise and missing data and
therefore is potentially well suited for automated and real-time tasks, such as earth-
quake monitoring and early warning. We demonstrate the method by means of syn-
thetic tests and by inverting an observed high-rate Global Positioning System
displacement dataset for the 2010 M, 7.2 El Mayor—Cucapah event. Our results
are compatible with published point-source estimates for this event within the respec-
tive uncertainty bounds.

Online Material: Additional information on the neural network methodology and
implementation details, tables on neural network parameters, crustal model and refer-
ence double-couple solution, and figures showing prediction error, crustal models,
normalized displacements, and histograms of weighted parameters.

Introduction

Earthquakes, and sometimes their associated tsunamis,
are among the most serious natural disasters humanity has to
face. Despite great advances in our understanding of the rup-
ture process, earthquakes are unpredictable and will most
likely remain so (Geller et al., 1997). It is therefore important
to provide information as quickly as possible after an event
has occurred to coordinate responses appropriately and limit
damage and casualties. A description of the seismic source
process is the basis of any such effort, and a moment tensor
point source (Madariaga, 2007) provides a useful approxima-
tion. Automatic moment tensor point-source solutions are in-
ferred globally from long-period teleseismic surface and
body waves (Ekstrom er al., 2012) using the centriod
moment tensor (CMT) method (Dziewonski et al., 1981).
Furthermore, the incorporation of the W phase (Kanamori,
1993), which arrives shortly before the S phase, allows

for more rapid global automatic CMT solutions. However,
while being very robust and well understood, the global ap-
proach is limited because it can only be applied to relatively
large (M, 25.5) events. Further, the need to obtain sufficient
teleseismic records limits the speed with which solutions can
be obtained. Therefore, the method has been adapted to the
inversion of regional broadband data (e.g., Ritsema and Lay,
1993; Walter, 1993; Zhu and Helmberger, 1996; Bernardi
et al., 2004), allowing smaller events to be characterized
and reducing the response times by using shorter epicentral
distances.

More recently, the increasing distribution of Global Po-
sitioning System (GPS) receivers of geodetic quality operat-
ing at high sampling rates (=1 Hz) has opened up new
possibilities to observe the displacement wavefield directly
and without clipping, even for large events in the near field
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(Larson et al., 2003; Bock et al., 2011). Thus, in combination
with traditional seismic observations, continuous GPS receiv-
ers are a promising candidate to provide additional
constraints for rapid source parameter estimation. In particu-
lar, they allow the observation of the wavefield at very low
frequencies, which may help to overcome the well-known
magnitude saturation problem caused by the fact that the cor-
ner frequency of the source spectrum shifts toward lower
frequencies with increasing source dimensions (Aki and
Richards, 1980). It has recently been demonstrated that
high-rate GPS data can be used for rapid source inversions
in seismically active regions of the world, such as southern
California, Japan, and Indonesia (e.g., Blewitt ef al., 2009;
Crowell et al., 2012; Melgar et al., 2012, 2013; Ohta et al.,
2012; O’Toole et al., 2012; Wright et al., 2012).

Ideally, we would be able to utilize all observations
available up to a certain point in time to rapidly obtain a
source estimate, regardless of whether the information comes
from a strong-motion sensor, a broadband seismic station, or
a GPS receiver. However, it is a challenging problem to com-
bine heterogeneous data types in an optimal way for a real-
time inversion. Bock ef al. (2011) and Geng et al. (2013)
used Kalman filters to couple the GPS displacement time
series to strong-motion data in order to obtain a broadband
displacement time series with a high signal-to-noise ratio
(SNR) in real time. A drawback of this approach is that it
requires the strong-motion instruments to be collocated with
GPS receivers, which is currently not the case for most opera-
tional high-rate GPS stations, at least in the western United
States (Geng et al., 2013). Making full use of these hetero-
geneous data types therefore requires new inversion algo-
rithms that are able to jointly invert data from multiple,
potentially spatially separated, sources. Furthermore, auto-
mated systems are required to deal with observational noise
and missing data, for example, due to clipping or physical
damage.

Realistic uncertainty estimates are required for any
interpretation of the results, notably if they are to be used as
an input for subsequent simulations such as finite-fault mod-
eling or ground-motion prediction. The expected uncertain-
ties strongly vary from event-to-event, depending on factors
such as station coverage, the knowledge of Earth structure,
and the event magnitude. This requires us to quantify uncer-
tainties automatically in each case and indicates a probabi-
listic approach is needed. A consistent use of probabilistic
methods would enable us to optimally combine the output of
different independent estimations (Cua and Heaton, 2007)
and propagate observational and modeling uncertainties
through the entire processing chain using the laws of prob-
ability, a process that has been described as the formalization
of logical reasoning (Jaynes, 2005).

Recently, we introduced a rapid, neural-network-based,
probabilistic point-source inversion algorithm and demon-
strated how it can be used to invert static displacement ob-
servations (Kiufl ez al., 2014). Here, we present an extension
to our approach, enabling us to directly invert waveform data

P. Kidufl, A. Valentine, R. de Wit, and J. Trampert

as provided by accelerometers, broadband seismometers, or
continuously operating GPS receivers. It can operate auto-
matically, in (near) real time, as the data arrives. It is based
on a nonlinear pattern recognition algorithm and has several
advantages over (often linearized) optimization schemes,
such as least-squares inversions or Markov chain Monte
Carlo methods. First, our method is very flexible with respect
to the type of observations. Any combination of observables
can in principle be used as an input pattern for a neural net-
work, as long as a sufficient quantity of examples of input
and output patterns can be provided. Second, inversions are
fast and very robust with respect to outliers and observational
noise. Similar probabilistic neural network algorithms have
recently been applied to other geophysical inverse problems
(e.g., Meier et al., 2007; Shahraeeni et al., 2012; de Wit et al.,
2013, 2014; Walker and Curtis, 2014).

This article is organized as follows. First, we give a brief
introduction to the neural-network-based method and de-
scribe the source and Earth model parametrization. Second,
we apply the method to an observed GPS displacement wave-
form dataset for the 2010 El Mayor—Cucapah event. Third,
we introduce a framework to analyze the resolving power of
the data and assess the robustness of inversions by perform-
ing a number of synthetic experiments, followed by a discus-
sion on more general consequences and limitations of the
approach.

Methodology

The goal of an inversion in general is to determine a set
of model parameters m, given a vector of observations d.
Conventionally, this problem is approached by fitting a
model to an observed datum d by repeatedly evaluating a
forward problem d = g(m), relating model parameters to
observations, for example, by running a wave propagation
code until a candidate model (or a set of candidate models)
is found that matches the observations sufficiently. Examples
are the CMT algorithm for moment tensor inversion (Dzie-
wonski et al., 1981) or the adjoint method often adopted for
tomographic imaging (e.g., Fichtner er al., 2006). This
approach is typically prohibitive for real-time applications,
because it involves repeated evaluation of the often computa-
tionally expensive forward problem g(m). Furthermore, if
similar inversions must be performed repeatedly, for example
in monitoring tasks such as earthquake early warning (EEW),
repeated evaluation of the forward problem is required for
each independent observation.

A second family of algorithms is based on a direct
approximation of the inverse mapping g~' (d). Typically, this
is achieved by means of an empirical regression model,
sometimes dubbed an empirical scaling law, which has to
be calibrated beforehand, often using a database of past ob-
servations. These models are computationally cheap at evalu-
ation time and this route is thus often taken for rapid source
parameter estimation in the context of EEW. An example is
the rapid estimation of the event magnitude using proxy
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variables such as peak ground movement or the predominant
period (e.g., Nakamura, 1988; Allen and Kanamori, 2003;
Kanamori, 2005).

Our approach belongs to the second group of methods. It
is based on a neural network forming a regression model,
which relates observable waveform data with source param-
eters. However, it is calibrated using a synthetic dataset ac-
curately capturing the physics of wave propagation and
giving us full control over source distributions and the noise
model. Moreover, it provides a fully nonlinear and probabi-
listic description of the possibly nonunique inverse mapping,
thereby relaxing many of the restrictions associated with
conventional regression-based approaches, which often
require measurements to be defined in such a way that the
relation of observables to parameters takes a simple form.
For instance, when rapidly estimating the moment magnitude
from the predominant period of a short initial waveform win-
dow (e.g., Wu and Kanamori, 2005), a log—linear regression
relation is fitted to a database of historic observations and
catalog events.

We follow a Bayesian approach (e.g., Tarantola, 2005),
that is we describe our state of knowledge on a set of earth-
quake source parameters as the probability density function
(PDF) p(m/|d), in which m/ is a vector of source parameters
and d is the totality of (noisy) observations available for
inversion at a certain point in time. An inference about a spe-
cific parameter m; can be made by means of the marginal
posterior PDF,

plnfld) = [ [Tam; pim 0. (1)

J#k
The marginal PDF tells us what we can learn about parameter
m{ while taking into account the possible variations in all
other parameters. As in Kiufl er al. (2014), we directly

model marginal posterior PDFs (equation 1) as mixtures of
1D Gaussian kernels,
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in which a;(d), y;(d), and o;(d) are functions of the data d
that are approximated by a two-layer feedforward neural net-
work. Any PDF can be represented to arbitrary accuracy by a
superposition of a fixed number of Gaussian kernels if
enough kernels are being used (McLachlan and Basford,
1988). Our methodology is based on the mixture density net-
work (MDN) introduced by Bishop (1995). An MDN can
learn a parametric approximation to any smooth, potentially
multimodal, conditional probability density from a set of
samples. We repeat the training procedure several times
for each parameter and combine the independently obtained
network models into ensembles, which increases the accu-
racy and robustness of the predictions. Naturally the number
of Gaussian kernels M in equation (2) has an influence on the
accuracy of the approximation. However, note that the effec-
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tive number of kernels is much larger than M, due to the en-
semble averaging of several independently obtained neural
networks, which possess M Gaussian kernels each. We thus
conclude that in practice, the limit imposed by using a finite
number of Gaussian kernels is negligible compared to other
limiting factors, such as the finite number of samples in the
training set (see the Inference with Prior Samples section).

The methodology is described in full detail in Kaufl ez al.
(2014). The main development in this article is the use of
waveform data; the underlying method is unchanged. () De-
tails on the neural network architecture used throughout this
work are provided in the Neural Network Architecture and
Implementation Details section and in Table S1 in the elec-
tronic supplement to this article.

We represent seismic sources as moment tensor point
sources (Madariaga, 2007). As in Kéufl et al. (2014), we par-
ametrize the space of moment tensors using a geometric par-
ametrization suggested by Chapman and Leaney (2012) and
Tape and Tape (2012) and additionally restrict ourselves to
double-couple sources. The latter choice is mainly motivated
by the consideration that a double couple is potentially easier
to interpret than a full moment tensor source in the context of
an early warning application. Moreover, this assumption
simplifies the inverse problem by reducing the number of
free model parameters. As a consequence, fewer synthetic
examples are required for neural network training, which re-
duces the computational cost of the training procedure. The
framework can easily be extended to include non-double-
couple (as in Kéaufl er al., 2014), as well as nondeviatoric
sources; and, because of our parametrization, such con-
straints are straightforward to implement.

The probabilistic framework requires us to define suitable
prior distributions for each parameter, representing the knowl-
edge we have about a parameter before the data have arrived.
This involves the assumption that the event has occurred in a
particular monitoring area, which must be determined in
advance. We work with uniform distributions on orientational
parameters, source location, depth, and logarithmic magni-
tude. The temporal evolution of the source is parametrized by
a triangular source time function with varying half duration.
Considering that earthquakes appear to some extent to be self-
similar (e.g., Aki and Richards, 1980), it is reasonable to as-
sume that the length of the source wavelet should scale with
the event size. For simplicity, here we correlate the half dura-
tion to the event size using the relation

t=ax108M}? (3)

(Ekstrom et al., 2012) and note that any other relation can
easily be replaced for equation (3) if we have reason to make
other assumptions on the rupture process. The proportionality
factor a is drawn from a normal distribution with mean 1.05
and standard deviation 0.1. This is intended to account for
uncertainties in the empirical determination of equation (3).

In summary, we parametrize moment tensor point
sources using the eight independent model parameters given
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Figure 1.  Station configuration and source region according to
Table 1 (shaded area). The triangles show the position of 34 real-
time Global Positioning System (GPS) receivers, and the star de-
notes the epicenter of the 2010 El Mayor—Cucapah event. The color
version of this figure is available only in the electronic edition.

in Table 1. The corresponding prior distributions cover all
possible double-couple point sources in a predefined moni-
toring volume. For the latter, we chose a rectangular region in
southern California, that spans the Salton trough and the
Mexicali Valley, thereby covering several major fault zones,
such as the southern tip of the San Andreas fault, the Brawley
seismic zone, the Imperial fault, the Laguna Salada, and the
Cerro Prieto (Lovely et al., 2006). In depth, the volume ex-
tends from 1.5 to 20 km. Figure 1 shows an overview of the
source region and receiver configuration.

Observational Noise and Modeling Errors

According to equation (2), the result of any inference
about a source parameter is made in the form of a PDF. The
posterior uncertainty estimates incorporate several sources of
error, such as the observational noise propagated into the
model space, trade-offs between parameters, limitations in
sensitivity of the data to the model parameter in question,
and also potential limitations in the neural network model
used to approximate the inverse mapping (as will be dis-
cussed in detail in the Inference with Prior Samples section).

We assume that observational noise is additive and
independent of m and write

d=g(m) +e¢, 4)

in which g(m) is an approximation to the forward problem,
that relates physical model parameters m to observable data
vectors d and m = (m/, m?), with the joint vector of source
parameters m/ and structural parameters m¢, respectively,
representing a 1D layered crustal model over a half-space.
The vector € accounts for any part of the observed signal that
is not accurately represented by g(m). It includes both errors
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Table 1
Point-Source Parametrization and Prior Distributions
Parameter Prior Distribution* Description
K U(0,2r) Strike
c U(-r/2,7/2) Rake
h Uu(,1) cos (dip)*
M, = (logM,/1.5) U(5.0,8.0) Moment magnitude
-10.7
Latitude U(32.0,33.5) Centroid latitude (°)
Longitude U(-117.0,—-114.5)  Centroid longitude (°)
Depth U(1.5,20) Centroid depth (km)

t=ax10°M)?  a~N(1.050.1) Half duration

*1(a, b) denotes a uniform distribution on the interval [a, b]; N (i, o) is

a normal distribution with mean y and variance o2.

fcos (dip) refers to cosine of dip.

due to neglected (source) physics, as well as observational
errors such as ambient noise. The noise vector € is drawn
from a normal distribution with covariance C,.

The fact that we only simulate wave propagation in a 1D-
layered medium requires us to find a 1D representation of the
highly heterogeneous Earth structure in the study region. Be-
cause there are multiple ways to define a 1D average of a 3D
structure, and it is not clear that we should give preference to
any particular choice, we marginalize over a range of 1D mod-
els, rather than conditioning our posterior estimates on one
specific average structure. Although the main purpose of this
measure is not to accurately represent existing 3D hetero-
geneities in the study region, it helps to desensitize the neural
networks with respect to effects caused by local structural var-
iations. We obtain distributions of 1D crustal structure from
the 3D crustal model CRUST 1.0 (Laske ez al., 2013). CRUST
1.0 is defined on a 1° x 1° grid featuring an ocean, two sedi-
mentary and three crystalline rock, and an upper-mantle layer
(s) at each grid point. We ignore the ocean layer and topog-
raphy and average the two sedimentary layers to obtain a sin-
gle sedimentary layer. Thus, we have a five-layer model in
every grid point in the model region ranging from 31.5° to
34.5° in latitude and from —118.5" to —113.5" in longitude.
For each layer, the minimum and maximum values of each
parameter (layer thickness, Vp, Vg, density) taken over all
grid points provide the limits of a uniform distribution from
which we independently draw 1D layered crustal models
m§ ~Um§ . M5 a)- The ranges are summarized in Table 2
and (B a set of test models is visualized in Figure S2.

We do not attempt to estimate other modeling errors,
such as neglected 3D heterogeneities or attenuation. How-
ever, as we will show, our results are in general very robust
with respect to unmodeled noise and other perturbations (see
the Discussion section).

Formation of Input Vectors and Preprocessing

® To use the observed and synthetic data for neural
network training and evaluation, several preprocessing steps
are required, which are described in detail in the text of
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Table 2

Prior 1D Earth Model Ranges
Layer Thickness (km) Vp (km/s) Vg (km/s) p (kg/cm?)
Sediments [0.11,2.94] [1.75,3.47] [0.34,1.76] [1.82,2.28]
Upper crust [1.61,11.8] [5.00,6.30] [2.707,3.63] [2.55,2.79]
Middle crust [3.54,10.7] [6.30,6.60] [3.65,3.80] [2.78,2.86]
Lower crust [5.90,14.2] [6.60,7.10] [3.60,4.05] [2.86,3.05]
Upper mantle (half-space)  [10000,10000] [7.68,8.09] [4.28,4.49] [3.17,3.33]

the electronic supplement. In essence, three-component
displacement waveforms at all receivers are low-pass filtered,
downsampled to the Nyquist sampling rate, windowed, and
concatenated to form input data vectors d. We include all
data that arrive at the receiver network from the moment
t of the first signal detected, typically at the station closest
to the epicenter, until 7, + AT. That is, receivers that have
not yet triggered or are nonoperational are nevertheless in-
cluded in the inversion. This is to simulate an automated
monitoring situation, where no manual data quality check
can be performed. Clearly, the fact that certain receivers
did not record any signal yet at time f, + AT represents in-
formation on the hypocenter location (Satriano ef al., 2008).

Application to Displacement Waveform Data

The increasing availability of high-rate GPS stations pro-
vides us with the potential to directly observe the dynamic
displacement field caused by major earthquakes in real time.
We use displacement waveforms observed by the California
Real Time Network (CRTN), a network of high-rate GPS
receivers in southern California, during the 2010 El Mayor
earthquake (Hauksson ez al., 2010) to determine point-source
parameters. This serves as an example and enables us to as-
sess the potential of GPS waveform data to constrain point-
source parameters. However, other time-series data, such as
accelerograms or velocity seismograms, or a combination
thereof, could likewise have been used.

Previously, a good agreement has been reported between
integrated data of collocated accelerometer and broadband
instruments with the GPS displacement time series for this
event (Allen and Ziv, 2011; Bock et al., 2011). Point-source
inversions using either a similar GPS displacement waveform
dataset or using static offsets extracted from the displacement
time series have recently been conducted by Melgar et al.
(2012), Zheng et al. (2012), O’Toole et al. (2013), and Kéaufl
et al. (2014) and have shown a good agreement to catalog
solutions, although with large uncertainties attached to some
of the source parameters.

We draw a total of 100,000 source and crustal models
from the prior distributions (Table 1) and solve the forward
problem g(m) using a method developed by O’Toole and
Woodhouse (2011). The synthetic waveforms contain body-
and surface-wave phases and include the remaining static
offset. We low-pass filter the observed and synthetic traces
using a cosine low-pass filter with corner frequencies 0.07

and 0.08 Hz and therefore work with a sampling interval
of 6 s. This choice is motivated by the fact that we cannot
expect to explain any of the higher frequency signal with a
1D average model in the highly heterogeneous southern
California crust (Tape, 2009). Moreover, a higher sampling
rate would significantly increase the computational effort
required for training set generation and network training, be-
cause a higher sampling rate would in turn lead to a larger
input dimensionality and therefore bigger neural networks
((® see also the Limitations, Computational Cost and Train-
ing Set Size section in the electronic supplement).

In Figure 2, examples of filtered, three-component ob-
served, and corresponding synthetic displacement waveforms
recorded at station POTR are given. We set AT = 60 s, that is
we collect data for one minute after the earthquake has been
detected at the first receiver. We assume that the noise is tem-
porally and spatially uncorrelated, that is C, is diagonal, and
we assign a standard deviation of 0.004 m to the horizontal
and 0.01 m to the vertical component, estimates obtained from
600 s of pre-event data at the 34 receivers, filtered in the same
way as the synthetic data. The realistic estimation of the ob-
servational noise covariance is in general difficult and outside
the scope of this article. A discussion in the context of high-
rate GPS time series is given by Genrich and Bock (2006). In
general, we found that reported noise levels for this type of
data vary between a fraction of millimeters and centimeters
for the horizontal components and millimeters to several cen-
timeters in the vertical components, depending on which pre-
processing steps are applied to the raw GPS time series.

Subsequently, we train ensembles of MDNs using 95%
of the synthetic examples during training and keep the re-
maining 5% as an independent test set. This is used to assess
the prediction accuracy and resolving power of the data as
discussed below. The training procedure is described in
Kiufl et al. (2014).

Inversion of the El Mayor—Cucapah GPS Dataset

Having obtained a set of trained MDN ensembles, we
can perform inversions by presenting the preprocessed ob-
served input vectors to the neural networks. We thus invert
one minute of waveform data recorded after the 2010 M, 7.2
El Mayor—Cucapah earthquake and obtain the posterior PDFs
shown in Figure 3. () Examples of observed displacement
waveforms are depicted in Figure S3. We use all 34 CRTN
receivers located within the modeling domain and
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Figure 2.  The synthetic (dashed line) and observed (solid line) GPS waveforms at station POTR, at an epicentral distance of 121 km of the
M, 7.2 El Mayor—Cucapah event. The remaining static offset is included in the synthetic waveforms. The shaded area corresponds to one
standard deviation of the observational noise, estimated from 600 s of pre-event data. The synthetics have been calculated for the 1D crustal
model and source given in Zheng ez al. (2012). Inset shows the source-receiver geometry. The color version of this figure is available only in
the electronic edition.
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Figure 3.  The posterior probability density functions (PDFs) for the El Mayor—Cucapah observed GPS waveform dataset using 60 s (solid

curve) and 12 s of data (dashed curve). The vertical lines denote the position of the centroid moment tensor catalog solution (solid line) and
the solution by Zheng et al. (2012) (dashed line) for this event. Zheng et al. (2012) did not invert for epicentral location and half duration. The
dotted curve shows the prior distribution for each parameter. The information gain Dy; (see the Discussion section) represents a measure of
how much the posterior distribution differs from the prior distribution. The color version of this figure is available only in the electronic

edition.

deliberately do not remove any stations with poor data qual-
ity or missing data. This is to simulate a (near-) real-time
setup, in which we have to deal with missing data and inde-
pendent quality criteria might be unavailable. In fact stations
P496, P492, P503, and P481 did not record any data at all
during the event and contain zeros, but they are presented to
the networks nonetheless. Although the posterior modes
agree well with the CMT catalog solution (solid vertical lines
in Fig. 3) within the uncertainty bounds, our result suggests a
slightly increased half duration compared to the value ob-
tained using relation (3) with a = 1.05. This is in agreement
with finite-fault inversion results, obtained using Interfero-
metric Synthetic Aperture Radar, geodetic and seismic data,
that have revealed a relatively long rupture over a complex
system of subfaults with total length of ~120 km and a
duration of more than 40 s (Hauksson et al., 2010; Wei et al.,
2011).

The ambiguity in strike has been observed before for
this event by Zheng et al. (2012) and Kiufl er al. (2014).
For a perfectly vertical fault plane (2 = 0) and the slip being
in strike direction (¢ = 0), the radiation pattern becomes
invariant under a rotation of strike by 180°. Given that the
fault orientation is close to such a strike-slip mechanism for
this event, we cannot discriminate between the two orienta-
tions given the uncertainties in ¢ and h.

Furthermore, we compare our results to those obtained
recently by Zheng et al. (2012), who inverted a 5 Hz GPS
displacement waveform dataset for focal mechanism, mag-
nitude, and depth using the cut-and-paste method (Zhu and
Helmberger, 1996) for the same earthquake. Their source
parameter estimates are indicated by vertical dashed lines in
Figure 3. Our results agree well with theirs, and the differ-
ences between their solution and the CMT catalog solution
are entirely explained by our uncertainty bounds.

We conclude that it is possible to infer a meaningful
point-source description from near-field displacement data
in near-real time, even if, mainly due to neglected 3D structure
and source finiteness, the synthetics are far from being able to
explain all the complexity of the observed waveforms (an
example is given in Fig. 2). However, we find that not all
parameters of a double-couple centroid moment tensor can be
constrained well under the given assumptions on the observa-
tional noise and structural uncertainties using a 12 s period
range and above. In particular, we cannot constrain source
depth and dip. The depth resolution is limited, mainly due to
the relatively low-frequency data corresponding to average
wavelengths of around 60 km. Moreover, because centroid
depth is known to trade off with 1D structure (Fan and Wal-
lace, 1991), we expect that the marginalization over 1D crustal
structure limits the depth resolution even further.
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Figure 4. Resolution analysis using 5000 synthetic examples drawn from the prior distribution. (a) Position of the mode of the posterior
distribution versus the known target value for the portion of the test set with M, >6.5. The gray scale shows the information gain Dy
(equation 5). (b) Distribution of the information gain for each parameter for all test set examples (dashed curve) and only the portion with

M, >6.5 (solid curve). The parameters of larger magnitude events are typically predicted with greater precision due to their increased signal-

to-noise ratio. The color version of this figure is available only in the electronic edition.

Discussion

Resolution Analysis

To obtain a more complete picture of the achievable res-
olution under the given assumptions and to evaluate the per-
formance of the method, we perform a large number of
synthetic inversions using the 5000 test examples that were
not used during network training. As in Kéufl et al. (2014),
we use the Kullback—Leibler divergence Dy to quantify the
difference between the posterior and prior marginal PDF for
each parameter and thus measure how much we have learned
from seeing a particular observation:

Dy (my) = [ln(lm)p(mkld)dmk, (5)

in which Dy > 0 with equality only if p(m|d) = p(my),
that is, the posterior equals the prior.

We present each test set example to the MDN ensemble
for each parameter and obtain a prediction in the form of a set
of posterior PDFs. Figure 4a shows the mode of the predicted
PDF plotted against the true target value for each example. If
a parameter were to be perfectly resolved, we would expect
to see a linear correlation indicating that predictions are pre-
cise. However, a larger scatter indicates that the mode of the
distribution deviates from the target value, typically accom-
panied by a broadened distribution. To quantify the precision
of the prediction for each example, we calculate the informa-
tion gain Dy; between prior and posterior distribution. The
information gain associated with each example corresponds
to the gray scale in Figure 4a to enable a visual quality as-
sessment. Examples with a lower prediction accuracy, for
which the posterior mode differs more from the target value,
consistently have a lower information gain, indicating a
broader PDF as expected. Histograms of the information gain

over the entire test set can give an impression of how well
a parameter can be resolved (Fig. 4b). It is also insightful
to consider the average conditional information gain
Dy (m;|d, m; €[a, b]), that is, the information gain for a
parameter m;, given that parameter m; falls into the bin
[a, b]. This enables us to analyze to what extent parameter m;
is constrained, depending on the value of parameter m;. Re-
sults for a number of parameter combinations are depicted in
Figure 5. () See Figure S4 for a complete overview.

This analysis reveals that we cannot resolve dip and depth
at all, because Dy < 0.2 nats for almost all examples. All
other parameters can only be resolved well for events larger
than M, 6.5 (Figs. 4b and 5), which is due to the poor SNR for
the smaller events. Furthermore, the source orientation and the
source location have an influence on the resolution of some
parameters (Fig. 5a, panels 5-8), which is a consequence of
the uneven station distribution (compare to Fig. 1). Note that
Dy (M,|d) > 0, even for events smaller than M, 6.5 (Fig. 5c,
panel 4), indicating that we are able to discriminate smaller
from larger events even if the signal is below noise level
for most or all of the stations. Figure 5b and 5c shows pos-
terior PDFs for small and large examples, respectively. If the
signal is below noise level at (almost) all of the stations, all we
can say is that an event is certainly smaller than M, 6.5, as is
the case for the event shown in Figure 5b.

Length of the Data Window

For EEW, it is crucial to obtain a solution as rapidly as
possible. We investigate the effect of the window length on
the resolution by training four additional sets of networks for
AT €{12,24,36,48 s} and evaluating the average informa-
tion gain of the test set

D—KL = ZDKL(mk|di)/N’ (6)
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example. The vertical line indicates the true (target) value; the dotted curve indicates the prior distribution. As expected, we are able to discern
more information about the large event than about the small event. The color version of this figure is available only in the electronic edition.
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(left) Average (solid line), minimum and maximum (dashed line) number of P-wave arrivals that occur within the data window

of length AT. (right) Average information gain over the test set in nats plotted versus AT for each parameter. The color version of this figure is

available only in the electronic edition.

in which N is the number of test set examples. It serves as a
proxy for the resolving power of the data. An increase in Dy,
indicates that the uncertainties on the test set predictions have
decreased on average. The results are shown in Figure 6 and
indicate that, for all resolved parameters, a significant in-
crease in average information gain with the length of the data
window can be observed. This is expected, because as time
progresses, an increasing number of stations provide data
(left-most panel in Fig. 6). Furthermore, stations closer to
the epicenter will gradually include later arriving phases
and reach the final static offset. This analysis indicates that
we can potentially reduce the window length to AT =40 s
without losing much of the resolving power.

Information Provided by the Waveform Data

Recently, Kiufl ef al., (2014) inverted static offsets us-
ing the same methodology for the El Mayor—Cucapah event.
It is interesting to compare the results obtained by inverting
full waveforms with those obtained by inverting the coseis-
mic static offsets only. Because we are using slightly differ-
ent prior ranges, a different noise estimate (owing to the real-
time nature of the data in this work) and a different station
configuration from that adopted in Kéufl ez al. (2014), these
two sets of results are not directly comparable. Instead, we
perform a synthetic experiment, in which we simulate noisy
static displacements, invert these as in Kéufl et al. (2014) and
compare the result to those obtained for the respective
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Figure 7. Inversion of (a) synthetic 1D waveforms (solid line) and 3D waveforms (dashed line) and (b) static displacements only for the
El Mayor event. (a) The differences between 1D and 3D waveform inversions are negligible. The Dy values correspond to the 1D dataset.
(b) Results of inverting static offsets only, as per Kiufl er al. (2014). A comparison of the information gain with the waveform inversion
results reveals, that although the Dy; values are slightly higher in the latter cases, we cannot learn significantly more from the waveform data
in this case. The color version of this figure is available only in the electronic edition.

synthetic waveform datasets. Posterior PDFs are shown in resources are assigned for the generation of the training set,
Figure 7b. We assume that the uncertainty of the static offset ~ which has to be done only once for a particular region.
measurements is similar to the noise level of the dynamic To investigate how the neglect of 3D structure affects the
movement and use a noise level of 4 mm for the horizontal ~ neural network output, we first generate synthetics in a 1D
and 10 mm for the vertical component. As can be seen, using layered Earth model () Table S2) using a double-couple
waveform data in general increases the information gain, but moment tensor obtained by Zheng et al. (2012) (® Ta-
dip and source depth remain unresolved. ble S3). Second, we use the 3D southern California crustal
However, even if the additional information gained us- and upper-mantle model CVMH 11.9 (Tape, 2009; C. Tape,
ing the full waveforms over static offsets may be limited in personal comm., 2014) and generate accurate 3D synthetic
this case, it remains advantageous to use the waveform data waveforms using SPECFEM3D (Tromp et al., 2008). Some
directly. To invert static offsets, we must first wait until the examples for 1D and 3D synthetic waveforms are depicted in
dynamic ground movement has ceased at all stations. It is  Fjoyre 8 and indicate a substantial difference between 1D
possible to obtain a first estimate of the final static offset and 3D synthetics. Both, the dynamic and the static wave-
roughly 10 s after the detection of the first dynamic move- 14 are affected by the 3D structure. The linear trend, which
ment (Allen and Ziv, 2011), which is typically at the time of ) e hserved at some of the 3D traces (e.g., p5S00.HXE) is
S-wave arrival. Therefore, we could obtain early estimates of an artifact most likely caused by the finiteness of the mod-

;}/lle static offsett atall (c)lf ;?)e gg StatfltOIlSﬂIIIl tIEe case }(:f ﬂ:’ El eling volume, which affects the static offsets much more than
ayor event a around . s atler the B wave has been the dynamic wavefield (Tape et al., 2011). This artifact is
detected at the first station. This is similar to the length of . . . .
. . . unlikely to bias our results, because we are using relatively
the waveform time window used here. However, the noise SO . . . . . .
short initial time windows, in which the linear build up is not

level of these early estimates of the static offset is likely . . .
- . . . . significant. Moreover, while the static part of the 3D syn-
to be significantly higher than in our synthetic test, with con- . . . . . .
thetics might not represent a physical signal, this inversion

sequent deterioration of the achievable resolution. Moreover, .
. . merely serves as a test to assess the robustness of the trained
we have seen that shorter-waveform time windows could be .
networks, and we expect that the general characteristics of

used without much loss of precision (Fig. 6). . .
the 3D synthetics are representative of the effects of a hetero-
geneous mantle and crust.
Robustness with Respect to Noise and Unmodeled Both datasets are presented to the neural networks
Physical Effects trained using only 1D data and yield the posterior PDFs
Neglected 3D Crustal and Upper-Mantle Structure. Be- shown in Figure 7a. The differences between the resulting
cause of the high computational demands of accurate 3D PDFs are minor, and we conclude that our inversion is robust
simulations in the highly heterogeneous southern California with respect to neglected 3D crustal and upper-mantle struc-
crust, we restricted ourselves to 1D layered Earth models. ture for this example. However, this invariance does not in-
However, incorporating 3D synthetics would not alter the dicate that a training set based on 3D synthetics would not be
time required for evaluation of the trained neural networks beneficial. Such a training set could significantly improve the
and would be straightforward, given enough computational resolution, in particular for the centroid location and depth,
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Figure 9. The signal at five stations selected at random has been replaced by random noise in 10 cases. The well-resolved parameters

prove robust with respect to this type of distortion. The color version of this figure is available only in the electronic edition.

because it would potentially enable us to use higher-fre-
quency data and forego the marginalization over 1D crustal
structure.

Missing Data. Although errors caused by using a 1D,
rather than a 3D Earth model, have partly been accounted
for during training by marginalizing over 1D average Earth
models, other sources of error have not been taken into ac-
count. For example, the observed displacement waveform
dataset used throughout this article includes several stations
that do not have any clear arrivals and show spurious signal
or no data at all. To test to what extent such perturbations
affect the output of the neural networks, we replaced the sig-
nal at five stations selected at random by random noise to
simulate missing data. Although depending on the actual
implementation, missing data might in fact rather be repre-
sented by zeros or other fixed values, we could easily modify
any implementation to replace those values by random noise.
The resulting posterior PDFs in 10 cases are shown in
Figure 9. The well-resolved parameters prove very robust

with respect to this type of perturbation, in the sense that the
posterior PDF assigns a high probability in the vicinity of the
target value. Most unstable are the results for o, /1, and depth,
which are the least well-constrained parameters. The event
latitude seems to be more sensitive to the perturbation than
the longitude, which is a consequence of the one-sided
station distribution. We expect that the robustness could be
further improved upon by explicitly including examples with
missing or distorted data in the training set, which has not
been done here.

Finiteness of the Earthquake Source. Near-field observa-
tions for midsize to large events typically show sensitivity
to the finite extent of the rupture area. This effect is not
represented in the neural network training set, which purely
consists of point-source examples. In the context of EEW,
naturally we are interested in utilizing the first observations
that are available for an ongoing earthquake. In particular in
well-instrumented areas such as southern California, this
involves the evaluation of signal from stations close to the
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earthquake rupture front. Clearly, we cannot expect to be
able to explain the complex near-field radiation pattern of a
realistic finite-source distribution with a point source, but
note that finding a best-fitting point source is still a theoreti-
cally well-defined concept. However, traditional approaches
typically require strong regularization if near-field data are to
be used, because the associated optimization problem be-
comes unstable and highly nonunique. In particular, in the
case of the El Mayor—Cucapah event, other researchers have
found a need to apply strong damping to suppress spurious
non-double-couple components and to stabilize the iterative
optimization process when inverting a similar static displace-
ment dataset as the one used here for point-source parameters
(O’Toole et al., 2013). Here and in Kaufl et al. (2014), there
appears to be no need for additional measures to account for
finite-source effects in the case of this event. This can poten-
tially be understood by noting that our approach is based on
samples that have been obtained prior to the inversion (see
also the Inference with Prior Samples section). As a conse-
quence, the relative weight given to the signal at different
stations is determined during the training stage and
independent of any particular observation that may be con-
taminated by an imprint of the spatial extent of the source.
The inversion is therefore less likely to be dominated by the
subset of stations that are strongly affected by finite-source
effects than it would be in a traditional inversion framework,
which involves the minimization of a misfit functional given
a particular observation. Of course the problem is expected to
become more severe if the rupture length becomes compa-
rable to the extent of the station network and the majority
of the receivers record a radiation pattern much different
from that of a point source.

Undoubtedly, however, for certain applications a point-
source description will not be sufficient. In particular, if the
source model is to be used for ground-motion prediction in the
close vicinity of the rupture area, the point-source radiation is
unlikely to yield realistic results. Therefore, we suggest that
future research should focus on the extension of the presented
methodology to account for finite-fault effects. This appears to
be a realistic goal, if a relatively low-dimensional parametri-
zation is chosen, for example, by using an approach as in
Vallée and Bouchon (2004) or Twardzik et al. (2014), where
the rupture process is described by a finite number of elliptical
subfault patches of varying size and orientation.

Inference with Prior Samples

The observed robustness with respect to perturbations of
the input is mainly a consequence of our approach relying on
prior rather than posterior sampling. The inversion process
does not involve the minimization of a misfit functional,
which is prone to overfit to unmodeled signal. Rather the
neural networks encapsulate a compact representation of a
database of synthetic waveforms, to which each observed
wavefield pattern is compared implicitly. A consequence
of this approach is that we have no opportunity to refine
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our estimate in high-likelihood regions, which would require
generating samples from the actual posterior distribution.
However, it has the advantage that we separate the time-
consuming sampling stage from the inversion. Furthermore,
we are less likely to be affected by outliers and noise. Most
misfit measures can easily be dominated by outliers caused
by missing stations or unmodeled physical effects (as dis-
cussed above). In our approach, the contribution of each indi-
vidual trace to the network output is determined a priori
during the training stage and thus is largely independent of
the actual observation. The use of prior rather than posterior
samples has further implications, which we discuss next.

We find that not all parameters can be resolved equally
well. Factors that may influence the resolution include the
observational uncertainties propagated into the model space;
the nonlinearity of the inverse problem, which may lead to an
intrinsic nonuniqueness; the differing sensitivity of the data
with respect to a specific parameter; and the limited spatial
data coverage and the frequency content of the dataset. How-
ever, in a framework that relies solely on prior samples, the
density of prior samples in the joint data model space also
imposes limitations on the resolving power of the model.

First, consider the extreme case of a complete lack of
training samples. This would result in the MDN output being
independent of the input and mimicking the prior distribution
(due to the initialization, see Bishop, 1995; Kaiufl et al.,
2014). As more samples are presented during training, the
output distribution will progressively be shaped to mimic
the distribution of the training set, until the quality of predic-
tions for an independent validation set (which is constantly
evaluated during the training process) deteriorates, at which
point we halt the training procedure. This prevents the model
from overfitting to the training set, a technique known as
early stopping. Because the training procedure involves a
nonconvex optimization problem (Bishop, 1995), it is prone
to local minimums. Therefore, we train sets of networks with
different numbers of hidden units and different random ini-
tializations of the network weights and form ensembles,
which average out the differences of the individual networks
(Kaufl et al., 2014).

Our experiments suggest that these measures lead to a
situation in which an undersampling of the model space will
not result in biased, but rather less precise predictions (that is,
broader distributions). In that sense, our results can be
considered to be conservative.

Required Number of Prior Samples. We have seen that the
number of prior samples is a limiting factor on the posterior
uncertainty. The prior sampling density necessary to make
meaningful inferences is related to the expected precision of
the observations via the inverse mapping. That is, differences
between two arbitrary data vectors only have to be explained
up to the order of the noise, which imposes a lower limit on
the required sampling density in the model space. Unfortu-
nately, there is no straightforward way to estimate the
required sampling density without explicitly knowing the in-
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available only in the electronic edition.

verse mapping. A pragmatic approach is therefore to train
networks with an increasing quantity of prior samples, until
the posterior uncertainties of the test set examples no longer
decrease. Figure 10 shows the average information gain
(equation 6) as a function of the number of prior samples.
These prior samples are replicated, so that the total number
of training examples is comparable in each case () see also
the Limitations, Computational Cost and Training Set Size
section in the electronic supplement). These experiments
were performed using a reduced set of 15 receivers to limit
the computational cost. Therefore, all information gain val-
ues are lower than those shown in Figure 4, for which 34
stations were used.

For all parameters, the average information gain in-
creases with the number of prior samples, particularly for the
better-resolved parameters. This indicates that a coarser prior
sampling results in a lower resolution. For the other param-
eters, the influence of the prior sampling density is insignifi-
cant in the examined range. This can indicate that with the
given noise model a denser sampling would not improve the
resolving power, but we cannot exclude the possibility that
regions with high-likelihood models are missed out com-
pletely. From this experiment, we conclude that a number of
~100,000 samples seems to suffice. In general, an improve-
ment in precision will always require a larger investment in
computational resources during training. () For further dis-
cussion, see also the Limitations, Computational Cost and
Training Set Size section in the electronic supplement.

Conclusions

We have introduced a nonlinear method for the rapid
characterization of earthquakes based on noisy near-field
and regional observations. The method is fully probabilistic
and posterior probabilities are modeled as mixtures of
Gaussian distributions. It can cope well with the strongly
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event-dependent SNR of the waveform data. Uncertainties
in the crustal model are taken into account, as is observatio-
nal noise. Synthetic tests suggest that the results are very ro-
bust with respect to unmodeled effects, such as those caused
by 3D structure and missing input data.

We have demonstrated that our approach is flexible with
respect to the type of input data. It can potentially be used in
a straightforward way to jointly invert different data types,
such as strong-motion and GPS waveform data, even if
stations are not collocated. Finally, the method in principle
allows for the incorporation of highly accurate and large
synthetic waveform databases (e.g., obtained by running
computationally expensive wave-propagation simulations—
without significantly increasing the computational cost for
the inversions itself) because the requirements of the trained
neural networks are modest in terms of memory and compu-
tation time, even for relatively large networks. If imple-
mented efficiently, a single inversion can be done within a
fraction of a second on a current standard desktop computer.

Data and Resources

The network-adjusted GPS displacement waveform
dataset for the El Mayor—Cucapah event can be downloaded
from http://scedc.caltech.edu/research-tools/MayorCucapah
20100404/ (last accessed June 2015). The 3D crustal model
CRUST 1.0 can be obtained from http://igppweb.ucsd.edu/
gabi/crust].html (last accessed September 2014). The follow-
ing software packages and libraries have been used for this
work: the 1D wave propagation code by O’Toole and Wood-
house (2011), SPECFEM3D (Tromp et al., 2008), the TauP
package (Crotwell et al., 1999), ObsPy (www.obspy.org, last
accessed June 2015; Beyreuther et al., 2010), ALGLIB (www.
alglib.net; last accessed June 2015), and PyBrain (www.
pybrain.org, last accessed June 2015; Schaul er al., 2010).
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