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SUMMARY

The determination of earthquake source parameters is an important task in seismology. For
many applications, it is also valuable to understand the uncertainties associated with these
determinations, and this is particularly true in the context of earthquake early warning (EEW)
and hazard mitigation. In this paper, we develop a framework for probabilistic moment tensor
point source inversions in near real time. Our methodology allows us to find an approximation
to p(m|d), the conditional probability of source models (m) given observations (d). This is
obtained by smoothly interpolating a set of random prior samples, using Mixture Density
Networks (MDNs)—a class of neural networks which output the parameters of a Gaussian
mixture model. By combining multiple networks as ‘committees’, we are able to obtain
a significant improvement in performance over that of a single MDN. Once a committee
has been constructed, new observations can be inverted within milliseconds on a standard
desktop computer. The method is therefore well suited for use in situations such as EEW,
where inversions must be performed routinely and rapidly for a fixed station geometry. To
demonstrate the method, we invert regional static GPS displacement data for the 2010 My 7.2
El Mayor Cucapah earthquake in Baja California to obtain estimates of magnitude, centroid
location and depth and focal mechanism. We investigate the extent to which we can constrain
moment tensor point sources with static displacement observations under realistic conditions.
Our inversion results agree well with published point source solutions for this event, once the
uncertainty bounds of each are taken into account.

Key words: Neural networks, fuzzy logic; Inverse theory; Probabilistic forecasting; Proba-
bility distributions; Earthquake source observations; Early warning.
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work. Our method is based on using a neural network to approximate
posterior distributions of source parameters, allowing uncertainties
and trade-offs to be represented. The method also allows results

1 INTRODUCTION

Studying earthquake sources is one of the fundamental tasks of

seismology. Knowledge of the source is required for many applica-
tions, including the quantification and mitigation of seismic hazard,
seismic tomography and the enforcement of the nuclear-test-ban
treaty. It is important to determine not only the parameters describ-
ing a physical source model, but also their associated uncertainties.
In particular, the latter are valuable for earthquake early warning
(EEW) systems, where quickly determined source parameters may
be used to alert residents of imminent ground shaking and to assess
where to direct resources in the aftermath of an earthquake. Real-
istic uncertainty bounds on source parameters are also required for
other applications. However, most existing methods only provide
point estimates; any uncertainty estimation has to be carried out
retrospectively.

In this study, we will develop a method capable of inverting a wide
variety of data for point source parameters within a Bayesian frame-

to be obtained rapidly—within a fraction of a second—once ob-
servations are available, making it particularly useful for EEW. We
demonstrate our method using static displacement data observed
by a continuous GPS network. However, the method is not limited
to a specific type of data and can in general be used for joint in-
versions of different observables, such as strong motion data and
displacement waveforms.

We describe earthquake sources using a moment tensor point
source description, which has proven to be sufficient for many ap-
plications. Moment tensor solutions are routinely calculated and
collected in comprehensive catalogues, for example, the Global
Centroid Moment Tensor Project (GCMT, www.globalcmt.org).
Apart from the underlying centroid-moment-tensor (CMT) al-
gorithm (Dziewonski et al. 1981; Ekstrom et al. 2012), which
is very robust and widely applied, there are a variety of other
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methods that have been used to invert long-period body and
surface waves for global moment tensor solutions, for example,
Kanamori (1993); Kanamori & Rivera (2008); Duputel et al.
(2011).

Within this framework, a source is described by six independent
moment tensor components. The wave equation is linear in these,
but the source inversion problem becomes non-linear if the centroid
location and origin time are also to be determined, in which case
solutions are commonly obtained by iterating with a linearized in-
version algorithm. Furthermore, the problem can be ill-posed due to
poor station coverage and noisy data, leading to non-unique and un-
certain solutions. This arises when multiple models, perhaps lying
in disjunct subsets of the model space, give rise to a good data fit.

Owing to their linearized nature, estimating realistic uncertainty
bounds within the framework of classical CMT-type inversions is
challenging. Typically, analysis is restricted to calculations of ‘stan-
dard errors’ due to noise within the inversion, and a more thorough
error analysis is often lacking. Recent studies (Duputel et al. 2012;
Valentine & Trampert 2012b) suggest that the reported errors typi-
cally underestimate the uncertainties significantly.

This motivates the use of a Bayesian statistical framework, giv-
ing rise to posterior distributions rather than just point estimates
of model parameters (Tarantola 2005). Our methodology is based
on parametrizing posterior probability distributions as sums of
Gaussians. We use neural networks that output the coefficients of
these Gaussian kernels to approximate the inverse mapping. Bishop
(1995) coined the term Mixture Density Network (MDN) for this
particular type of neural network.

Most Bayesian geophysical inversions to date have been based on
Monte Carlo methods, which directly generate samples of the poste-
rior distribution. For every new observation, the sampling procedure
must be repeated, which is often expensive and time-consuming. In
our neural network framework, in contrast, the sampling stage is
separated from the inversion stage. Once a network has been trained
using a set of previously generated samples, it can be presented with
new observations, and rapidly outputs the corresponding posterior
distribution of model parameters.

Neural networks have successfully been applied to a great va-
riety of classification and regression problems. Geophysical ex-
amples include seismic reflection data inversion (R6th & Taran-
tola 1994), probabilistic inversion of surface wave velocities
for Eurasian crustal thickness (Devilee et al. 1999), automated
data selection and quality assessment (Valentine & Woodhouse
2010) and dimensionality reduction of seismograms (Valentine &
Trampert 2012a). MDNs have been used to invert surface wave
data for global Moho depth (Meier et al. 2007a,b), water content
in the transition zone (Meier et al. 2009) and more recently for the
inversion of P- and S-wave velocity for petrophysical parameters
(Shahraeeni & Curtis 2011). Shahraeeni et al. (2012) extend this
approach to 3-D seismic data and de Wit ez al. (2013) use MDNs
to infer the Earth’s 1-D seismic velocity structure from body wave
traveltimes.

In this paper, we intend to recover centroid location, event mag-
nitude and the moment tensor from coseismic static displacements
as observed by GPS sensors (Blewitt 2007). From our perspec-
tive, static offset data provide a simple and manageable data set for
testing and developing this method. However, due to the increas-
ing availability of GPS stations in seismically active regions, there
is also growing interest in the possibilities that this type of data
provides for seismology.

Conventionally, displacement time-series are retrieved from ve-
locity or acceleration seismograms by integration. However, this

is only possible in a limited frequency range, due to ground tilts
and rotations that result in distortions and baseline shifts and the
accumulation of other observational errors. In particular, it is dif-
ficult to recover the static offset (the displacement remaining once
all ground shaking has ceased). Furthermore, due to limitations in
the dynamic range of the broad-band instruments, velocity seismo-
grams recorded close to the source often suffer from clipping. Nei-
ther of these problems affect GPS sensors, which directly measure
the ground displacement (e.g. Larson et al. 2003; Bock et al. 2011).
GPS data may therefore complement traditional seismic observa-
tions and provide additional information on earthquake magnitude
and fault mechanism in close proximity to the hypocentre or for
very large events (Wang et al. 2013). These properties are particu-
larly valuable in the context of EEW systems (Crowell ez al. 2009;
Melgar et al. 2013).

Displacement time-series from GPS sensors have previously been
used for rapid point source inversions. A recent example is given by
Crowell et al. (2009), who estimate the earthquake hypocentre and
magnitude using a grid search combined with an empirical scaling
relation in near real time. High-rate GPS waveforms are inverted by
O’Toole et al. (2012) using an adapted CMT inversion algorithm,
and Zheng et al. (2012) invert S Hz GPS displacement records for the
focal mechanism using a grid search approach. Allen & Ziv (2011)
use an early estimate of the static offset to rapidly determine the
earthquake magnitude given prior information on the hypocentre
and fault geometry. Moreover, the static offset has recently been
used for fast moment tensor determination by Melgar et al. (2012)
and O’Toole et al. (2013).

We begin by describing our MDN-based Bayesian inversion
framework and introduce a suitable parametrization of the space
of source models. We then validate our method by means of a
synthetic experiment and subsequently apply it to data recorded in
southern California after the 2010 My 7.2 El Mayor Cucapah event.
Finally, we demonstrate how uncertainties in earth model can be in-
corporated into our analysis, and illustrate how our approach may
be used to explore trade-offs between model parameters.

2 PROBABILISTIC
CENTROID-MOMENT-TENSOR
INVERSION USING MDNS

For any event, we wish to obtain a probability density function
(pdf) describing our state of knowledge of each source parameter.
We approximate these posterior probability densities using a neural
network, which outputs the parameters of a Gaussian mixture model
(GMM). This approximation is based on a set of examples of the
mapping between observable data and source parameters, obtained
by forward modelling. This is not too different from other advanced
probabilistic methods, such as the Neighbourhood Algorithm
(Sambridge 1999a), where the interpolation is done in the appraisal
stage (Sambridge 1999b) by importance sampling a piecewise con-
stant approximation of the posterior probability. Here, we use a
neural network—a general function approximator—to retrieve a
smooth interpolation. The advantage of our approach is that inver-
sions are fast and can be performed repeatedly for new observations
without significant additional computational effort. The evaluation
of this neural network approximation only involves repeated ma-
trix multiplications and evaluation of a simple non-linear function,
and can be performed within milliseconds on a standard desktop
computer.
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2.1 The inverse problem

Solving the inverse problem—the problem of finding source models
that fit an observed datum—is equivalent to finding the conditional
probability density (Tarantola 2005)

p(m|d) = kp(m)p(d|m), (D

where m € M is a source model, d € D a vector of observable data
points, p(m) is an unconditional or prior probability density on the
model space and k a normalization constant.

We will find approximations of the conditional distribution (1)
based on samples {m;, d;} obtained by forward modelling. Under
the assumption of Gaussian measurement errors, we have

1
p(dim) o exp {_E[d — g(m)]'C;'[d - g(m)]} , @

where g(m) denotes the deterministic forward relation between
model m and data d, and C, is a covariance matrix. Having gener-
ated a sample m; from the prior p(m), which is straightforward to
do for a suitable choice of distribution, we subsequently compute
the corresponding ‘noisy’ datum

d; = g(m;) + €, (3)

where € is a simulated measurement noise vector drawn from a
Gaussian distribution with zero mean and covariance C,.

In order to present and interpret the posterior, we use the concept
of marginalization (e.g. MacKay 2003), that is, integrating out all
model parameters except those of interest. We therefore define the
1-D marginal probability density

pimid) = [ pmia) [T am )
ki
and the 2-D marginal density
plmmy 1) = [ pia) T am. 5)
ki, ]

Note that by using the definition of conditional probability (e.g.
MacKay 2003), we can express probability densities defined on an
I-dimensional space in terms of marginal and conditional probability
densities over an (/ — 1)-dimensional space, since

p(my, ...,my|d) = p(my, ..., my_y, Mysy, ..., my|my, d)p(mi|d).

(©6)
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By recursively applying eq. (6), we can reconstruct distributions
over arbitrary dimensional subspaces of Ml from 1-D marginal and
conditional distributions.

2.1.1 Gaussian mixture models

We model 1-D probability densities, such as in eqs (4) and (6), as
mixtures of Gaussians with input-dependent parameters. We define

M

plmild) > Y o ()i (my|d), (7)
i=1

where M is the number of kernels, o; (d) are input-dependent mixture

coefficients that sum to unity and

LN N G
\/Eo,-(d) P 20;(d)

are Gaussian kernels with input-dependent mean w;(d) and standard
deviation o;(d).

Where a model parameter is periodic and defined on the domain
[0, 27r) rather than on R, we replace (8) with the wrapped normal
kernel

Gi(mi|d) = ®)

P
$i(61d) = ) ¢i(6 +n27|d). ©)

n=—P

Note that (9) is normalized on [0, 277) for P = oo, since

2 N [e%9)
¢(9|d)de=/ Sxlddx = 1, (10)
0 —00

with x =6 + n2x (Bishop & Legleye 1994). In practice we have to
limit P, while ensuring that it remains large enough for the integral
in (10) to contain all areas where the underlying Gaussian functions
¢:(x |d) do not vanish. Since the standard deviation of the Gaussian
kernels is typically much smaller than a few periods, and the means
(i (d) can be assumed to be not further apart than one period from
the range [0, 27), it is not necessary to sum over many cycles and
P =7 is found to be sufficient in our case.

It has been shown that, given a sufficient number of kernels, any
probability density can be approximated to arbitrary accuracy with
a GMM (McLachlan & Basford 1988). In particular, GMMs are
able to capture multimodal distributions. Fig. 1 shows examples
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Figure 1. Examples of 1-D posterior marginal distributions (black line). Left-hand panel: Unimodal distribution, the target value (vertical bar) is close to the
mode of the distribution. Middle-panel: Bimodal distribution. Although the target value coincides with a region of high probability, the mode of the distribution
is comparatively distant. Right-hand panel: Approximately uniform posterior. The mode of the distribution becomes irrelevant. The values for the information
gain Dy, are determined according to eq (14). Note that the information gain is low when the posterior resembles the prior (green line) closely.
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of GMMs approximating a unimodal, a bimodal and a uniform
distribution. Note that for (7) to be a meaningful approximation of
the conditional distribution (1), it is necessary that the set of samples
{m;, d;} is sufficiently dense that it captures all possible variations of
the underlying relation. We believe that this requirement can be met
in our case, since we are working in a relatively low-dimensional
model space.

2.1.2 Mixture Density Networks

In order to find the marginal posterior probability (7), we need to
find functional relations «; (d), i (d) and o; (d). We will approximate
these mappings by a feed-forward neural network as shown in Fig. 2.
A fully connected feed-forward neural network is a general function
approximator, able to capture a wide class of functional mappings
to arbitrary accuracy (Hornik et al. 1989). Similar to Kolmogorov’s
superposition theorem (Kolmogorov 1957), a neural network mod-
els a non-linear function by applying non-linear basis functions to
linear combinations of input variables, which are in turn combined
linearly to form the input to a subsequent layer. Such a model can be
visualized graphically and we use a two-layer structure as depicted
in Fig. 2. A detailed description and analytical expressions for the
network outputs is given in Appendix Section Al. Neural networks
with outputs that are regarded as the parameters o, p and o of
a GMM, are termed MDNs and have been introduced by Bishop
(1995).

The network model f(d; w) of a function is controlled by a set of
free parameters, the ‘network weights’ w, and we can assign a prob-
ability p(w|D) to a specific set of weights given a set of samples
D = {d,, m,}, consisting of input—output pairs, which are—in our

Hidden
layer

Input
layer

Output
layer

Figure 2. The two-layer feed-forward neural network used to model the
functional relation between data vectors d and GMM parameters «;, i; and
o ;. The filled circles represent computational units, which apply a linear or
sigmoidal ‘activation function’ to their according inputs. The input to any
unit is given by a weighted sum of the outputs of the previous layer and a
‘bias unit’, which is fixed to one, with weights w (interconnecting lines).
The units of the hidden layer #; are referred to as ‘hidden units’ in the main
text. For details and analytical expressions, see Appendix Section Al.

case—synthetic displacement vectors d,, € D and the correspond-
ing source models m, € M. We can therefore express the posterior
distribution (4) explicitly as a marginal over the distribution of net-
work weights,

plmeld) = f plmild, w)p(w|D) dw. (1

In practical implementations, it is hard to evaluate the integral in
(11), since it would involve sampling from the posterior weight dis-
tribution p(w|D), which is not known explicitly. Instead a common
workaround replaces the integral over the weight space with a single
set of weights w* for which the probability p(w*|D) is maximized
(Bishop 1995). This assumes that p(w|D) is sufficiently narrow and
centred around w*.

The set of optimal parameters w* is found by maximizing the
likelihood of a ‘training set’ Dy, = {d,, m,}, or equivalently mini-
mizing the error function

E[D] == Inp[m),ld,, wl, (12)

where the sum runs over all examples in D,. The minimiza-
tion of (12) is done using the limited memory Broyden—Fletcher—
Goldfarb—Shanno (L-BFGS) method (Nocedal 1980). As a quasi-
Newton optimizer it makes use of second-order information about
the error surface but replaces the full approximation of the Hessian
with a sparse representation, which makes it suitable for problems
with a large number of parameters. The required derivatives of (12)
are efficiently calculated using error backpropagation (Rumelhart
et al. 1986).

Since the method is iterative, a starting point w” in weight space
has to be chosen. Following Bishop (1995), we randomly initialize
the network weights such that the output of the untrained network
follows the unconditional distribution of the target data p(m|D,,).
See Appendix Section A2 for a detailed description. Once a suffi-
cient number of training iterations have been performed, we obtain
an optimal set of weights w* and can express (11) as

p(mi|d) >~ p(mg|d, w¥). (13)

2.1.3 Assessing the network performance

Once a trained network is available we can assess its performance
using a third independent test data set D.s. We can evaluate the test
set error E[D,.y]—that is, the negative log-likelihood of the test
set. The test set error can be used to compare different networks’
performance in predicting m; for the examples in the data set. How-
ever, a relatively large test set error does not necessarily indicate
that the network is performing poorly: it can also arise if the data are
insensitive to the parameter m,. In this case, we cannot learn much
upon seeing the training set and it is impossible to find networks
that give a low error.

We can quantify how much has been learned about a certain
parameter by measuring the difference between prior and poste-
rior distributions. This information gain can be measured using the
Kullback—Leibler divergence (e.g. MacKay 2003)

Dis = / In (%) pmyld) dmy. (14)

which is a dimensionless number given in logarithmic information
units (nats). A few examples for distribution pairs and their cor-
responding information gain are given in Fig. 1. Note that in the
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case that nothing has been learned upon seeing the data vector d,
p(my|d) = p(my) and Dy, = 0.

2.2 Regularization and complexity of the network model

The generalization performance of a trained network—that is, how
well it performs on previously unseen data—is influenced by a num-
ber of factors. In particular these include the network architecture,
the number of hidden units and the size and sampling distribution
of the training set. In addition, the fact that we replaced the full
predictive distribution (11) with a term accounting for only a sin-
gle set of weights, can limit the generalization capabilities, since
only a limited part of the weight space has been explored by the
training algorithm. It is possible that other networks exist that can
explain the training data equally well. In order to mitigate these
effects we ‘regularize’ during the network training process. This
is discussed in Appendix Section A3. Furthermore by combining
multiple networks—each of them trained using a different starting
point in weight space—into ‘network committees’, we can achieve
a significant improvement in generalization performance. A de-
tailed description and illustrative results can be found in Appendix
Section A4.

2.3 Parametrization of point sources

Seismic point sources are fully determined by a point in space and
time and a second-order tensor—the ‘moment tensor’. Any seismic
moment tensor can be written as a symmetric 3-by-3 matrix with
six independent components (e.g. Madariaga 2007).

It might appear straightforward to use the six moment tensor
components as independent parameters directly. Doing so, how-
ever, has several disadvantages. The moment tensor encodes three
distinct types of information: the total amount of energy released;
the radiation pattern and the orientation of the source. Using the mo-
ment tensor components as parameters does not allow for an easy
distinction between the three. This is particularly problematic in
probabilistic inversions, since uncertainties on parameters directly
relate to distances in parameter space. In order to find interpretable
probability distributions it is important to choose a parametrization
in which distances are physically meaningful and where the amount
of duplication—that is, the existence of two parameter configura-
tions that correspond to the same physical source—is minimized.
Furthermore, correlations among multiple parameters should re-
flect physical relations, rather than interdependencies caused by the
particular parametrization.

Therefore, a description that clearly separates magnitude, radia-
tion pattern and source orientation has advantages. We thus follow
Tape & Tape (2012), who give a geometric approach to efficiently
parametrize all possible moment tensors. A similar exposition is
also found in Chapman & Leaney (2012). We will briefly review
the parametrization, but refer the reader to their publications for
further details.

A moment tensor is fully determined by a set of three eigenval-
ues A; € R and an orthonormal basis U, determining the orientation
of the source. If the trace of the moment tensor vanishes, the net
moment is zero and the source is called ‘deviatoric’ (e.g. Shearer
1999). We restrict ourselves to deviatoric sources, since this repre-
sentation is chosen by most established catalogues for earthquakes,
but it is straightforward to extend our method to admit all possible
point sources.

Fast probabilistic CMT inversion 5

Table 1. The eight parameters used to describe all devia-
toric point sources.

Parameter  Description

y Deviation from a pure DC, for which y =0
K Strike

o Rake

h cos(dip)

P V2M,

lat Centroid latitude

lon Centroid longitude

depth Centroid depth

The eigenvalues control radiation pattern and magnitude. The
latter is given by p = ||A|| = 2 M,, with the eigenvalue triplet A
and the scalar seismic moment M. We can thus find a magnitude-
independent radiation pattern

A= 5, (15)
0

where the two remaining degrees of freedom, governing f\, can be
parametrized using spherical coordinates on the unit sphere. Tape &
Tape (2012) show that only a subset of the sphere—the fundamental
lune, corresponding to one of the six eigenvalue permutations—is
required to produce all possible radiation patterns. The fundamental
lune is given by (Tape & Tape 2012, eq. 17)

L={AeR’:1 =21 =21, |IAl =1}. (16)

In the following. we use the set of coordinates (y, B) to parametrize
the fundamental lune, where — /6 <y <mw/6and 0 < 8 < m. For
deviatoric sources, we fix § = 7 /2 and y becomes a measure for the
extent to which a moment tensor departs from a pure double-couple
(DC), for which y = 0. The parameter y is related to the more
commonly known parameter € = A,/max (|A;], [A3]) (e.g. Giardini
1984) via the relation tany = /3¢/(2 — |¢|) (Tape & Tape 2012,
section 8).

The space of source orientations can be parametrized by three
angles (k, o, 0) with ranges 0 < x <27, —7/2 <0 <m/2 and
0 < 6 < 7 /2, which correspond to the strike, slip and dip angle,
respectively, for DC sources. For a given beachball pattern A, a
uniform distribution of orientations is retrieved if (k, o, k), with
h = cos (0), are uniformly distributed (Tape & Tape 2012).

We thus work in the domain TPEV of deviatoric moment tensors
given by

T = {00k ) : -

55055,05;151,,»0}. (17)
2 2

The eight-dimensional model space is the joint space of deviatoric
moment tensors and hypocentral locations

M = TPEY x {(lat, lon, depth)} . (18)

Note that there is no temporal coordinate, since this cannot be
constrained using static data only. Table 1 summarizes the model
parameters and their relations to more commonly used source
parameters.

2.4 Synthetic static displacements

In order to train networks, we need to generate samples according
to (3). For any m € M, we can calculate a set of three-component
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synthetic static displacements g(m) € D = R* where N, is the
number of receivers. We solve the forward problem using a method
developed and implemented by O’Toole & Woodhouse (2011), who
use an adapted Thomson—Haskell propagator matrix method to
solve the elastic wave equation in a plane layered, isotropic medium.
In particular, the method is exact and stable in the zero-frequency
limit and is thus well suited to calculate static displacements. While
there is no need for the calculation of the dynamic wavefield in this
demonstration, the flexibility of this forward solver allows us to eas-
ily extend our approach to joint inversions of waveform and static
data at a later stage. Note that the implicit flat-Earth approxima-
tion is valid for shallow events and epicentral distances up to ~20°
(Okada 1985).

2.5 Data pre-processing

Pre-processing of input and target vectors can significantly increase
the convergence speed of the training stage (Bishop 1995) and
ideally the input vectors follow a standard normal distribution. We
find that we achieve suitable input data distributions by transforming
the three-component static displacements u, expressed in Cartesian
N—E-Z-coordinates, as follows:

i, = log |[ul], (19)

it, = arccos (ﬂ) ) (20)
[lul]

ity = arctan2 (ug, uz), @D

where arctan2 denotes the version of the arctan function that takes
the phase into account. A 3 N,-dimensional network input vector d
is subsequently formed by concatenating the i; at all N, receivers.
The training set D, is standardized to have variance one and mean
zero (Appendix B). While this increases convergence speed, it also
leads to an equal weighting of the input vector components. Note
that noise is added to the synthetics before performing the transfor-
mation. New data vectors to be presented to the network have to be
transformed accordingly.

Target variables my; are rescaled to [—1, 1], or to [0, 27) for
periodic variables. However, in what follows we do not explicitly
distinguish between the rescaled parameters /7, and the untrans-
formed parameters iy, in order to keep the notation simple.

3 DEMONSTRATION

To demonstrate this approach and to study the resolvability of point
source parameters using coseismic displacement data we perform
two experiments. First, we work in an idealized scenario using
only synthetic data and complete azimuthal coverage of receivers.
We then extend the setup to a more realistic station distribution
and invert observed data for a 2010 My 7.2 event recorded by
the California Real-Time GPS network (CRTN). We compare our
results to several previously published point source inversions and
catalogue solutions.

3.1 The 2010 My, 7.2 El Mayor Cucapah event

An My 7.2 event, which occurred on 2010 April 4 in northern
Baja California, was recorded by 105 GPS receivers of the CRTN
network. The tectonic structure in the source region is comparatively
complex and the rupturing process involves a combination of normal

and right-lateral faulting (Hauksson ef al. 2010; Wei et al. 2011;
Oskin et al. 2012). Moment tensor inversions for this event using a
similar data set have been performed using a variety of deterministic
approaches (Melgar et al. 2012; O’Toole et al. 2013) and can serve
as a benchmark for our results.

We use a set of observed post-earthquake coseismic displace-
ments for the inversion, which have been determined from post-
processed site positions before and after the event (Nikolaidis 2002,
see also http://sopac.ucsd.edu/processing/refinedModelDoc.html).
We simulate wave propagation in the same layered crustal model
as used by Melgar et al. (2012) and O’Toole et al. (2013). The
1-D model is based on the California Community Velocity Model
version 4 (Kohler et al. 2003), which has been averaged in a box
with corners (117°W, 32°N) and (115°W, 34°N) and manually tuned
to account for the fact that most of the relevant stations sit on soft,
sedimentary material (Melgar, personal communication, 2013).

3.2 Prior constraints

The Bayesian approach requires us to choose prior probability dis-
tributions on the parameters and a suitable noise model for the ob-
served data. While prior information on the rupturing process and
the faults involved is certainly available for historic events, we aim to
investigate the extent to which we can constrain source parameters
from the static offset data alone. Furthermore, in an EEW context
we want to be able to monitor multiple fault zones and include the
possibility of earthquakes happening on previously unknown faults.
We therefore choose prior distributions that incorporate all possible
deviatoric sources. Within our parametrization (Section 2.3) we ob-
tain a distribution of moment tensors that is approximately uniform,
by drawing the orientation- and type-governing parameters (y, k,
o, h) from uniform distributions. We do not draw p directly, but
instead consider distributions on My (Hanks & Kanamori 1979),
which are related by p = +/2 - 10'-5™w+107)  This ajds network
training, since p itself can vary by multiple orders of magnitude.
My, is subsequently drawn from a uniform distribution in the range
from 6.5 to 8.0. The epicentral location has been restricted to a
1.5°-by-2° box centred around the location of the GCMT solution;
depth ranges from 2 to 22 km. Fig. 3 shows a set of samples drawn
from the prior.

In an EEW setup, the location prior would correspond to the
monitored volume of possible source locations, which could be a
region encompassing a set of known faults. Note that predictions for
events that occur outside the prior range are likely to be meaning-
less, since they would require the trained networks to extrapolate to
previously unseen regions; we have not addressed this in our perfor-
mance tests in this case. The potentially time-consuming generation
of this set of prior samples, forming the training set for the neu-
ral networks, can be performed before the EEW system becomes
operational.

Throughout this study, we assume that observational noise is
Gaussian and uncorrelated. We assign a station-independent noise
level of 1 mm in horizontal and 10 mm in vertical direction, which
is slightly more conservative than the standard error estimates pro-
vided with the data set. Note that if a real-time algorithm (such as
Allen & Ziv 2011) were used to retrieve an early estimate of the
final static displacement using an initial portion of the displacement
waveform, we would typically have to assume a noise level that is
up to one order of magnitude higher than that used here. Table 2
summarizes the a priori bounds on all eight parameters and the
noise standard deviations.
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Figure 3. Shown are 500 prior samples covering the study region. The black and red triangles indicate the positions of the 42 virtual receivers used in the
synthetic experiment and the 37 CRTN stations, respectively. The reported position of a recorded 2010 My 7.2 event is denoted by the yellow star.

3.3 A synthetic experiment

In order to test our methodology and analyse the resolution power of
static displacement data we first perform a synthetic test, in which
we use an idealized distribution of stations at the surface (black
triangles in Fig. 3).

3.3.1 Network training and validation

Having chosen prior distributions and a noise model, we generate
a total of 100 000 examples {d;, m;}, of which 80 000 form the
training set Dy, 16 000 serve as validation set Dy, and the remaining
4000 examples are used as test set Diy. We subsequently train

network committees consisting of C = 50 members on marginal
distributions p(m|d) for each of the eight model parameters. The
number of Gaussian mixture components per member has been set to
M = 6, leading to an overall number of C - M = 300 components per
committee. The number of hidden units for the committee members
is randomly chosen in the range [20, 50] ([40, 60] for latitude and
longitude) based on the considerations given in Appendix A4 (see
also Fig. Al).

Once the trained network committees have been generated, we
present the test set to each committee. For every test set example
we retrieve a posterior pdf, which we can compare to the true target
value for this example. Quantifying this difference can be difficult,
depending on the complexity of the pdf. A simple measure is the
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Table 2. Prior parameter ranges and noise am-
plitudes. Distributions on the source parame-
ters are uniform with hard bounds as indicated.
The noise is assumed to be uncorrelated normal
with standard deviations as given.

Parameter Prior range

y —Fto%

K 0-2m

o -Zt0 3

h 0-1

My 6.5-8.0

lat 31.2°N-32.7°N
lon 115°W=117°W
depth 2-22 km

Noise level oy =0, =1mm; o, =10 mm

distance of the mode from the target value. This distance can be
visualized as in Fig. 4. If the pdf shows a pronounced maximum and
is unimodal for all test set examples, ideally we would see a straight
diagonal line, indicating that the predicted modes align well with
the target values. However, this measure does not take the full pdf
into account. This is particularly significant if the pdf is multimodal.
The target value might still lie in a range to which a high probability
is assigned despite the mode being comparatively distant from the
target value. The measure is rendered completely meaningless in
the limiting case of a uniform posterior distribution. In this case,
the mode is insignificant, since the same probability is assigned to
any parameter value. [llustrative examples can be seen in Fig. 1.

In order to more easily interpret Fig. 4, we take a second mea-
sure into account—the information gain. This measures the distance
of the posterior from the prior distribution using eq. (14). As dis-
cussed in Section 2.1.3, if a posterior distribution resembles the
prior closely, the information gain will be close to zero, indicating
that we did not learn much about this parameter, and the distance
of the mode from the target value is less relevant. This information
gain is colour-coded in Fig. 4. The figure also reveals an artefact
due to the fact that we approximate marginal distributions by means
of GMMs. For marginal distributions that closely resemble a uni-
form distribution, the mixtures of Gaussians tend to overshoot at
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the edges of the prior range, since Gaussian kernels that are placed
close to a hard bound of the model space are forced to fall to zero
sharply, leading to a very narrow kernel (cf. right-hand panel of
Fig. 1). This effect causes the vertical features in the plots for y, &
and depth at the boundaries of the model space.

We provide histograms of the information gain over the whole
test set in Fig. 5. These give some insight into the average resolving
power of the data. A large average information gain indicates that
a particular parameter is well resolved. Thus, we see that the av-
erage information gain is comparatively high for My, latitude and
longitude with values of around ~2 nats, indicating that these pa-
rameters are well resolved. We observe intermediate average values
for strike « and rake o and low values, corresponding to a very
poor resolution, for y, cosine of dip (/) and depth. Finally, Fig. 6
shows 1-D posterior marginals for a test set example. In addition to
the posterior distribution (thick black line), the predictions of the
individual committee members are shown in light grey. The known
target values for this example are highlighted by vertical lines.

3.3.2 Conclusion

We find that, given the noise model, prior bounds and with an
idealized station distribution, we are able to determine epicentral
location and magnitude well. In general, y, which indicates how far
the source deviates from a pure DC, the cosine of the dip (/) and
the source depth seem poorly constrained. For strike (x) and rake
(o), we find an intermediate resolution.

The strike angle « is constrained up to an intrinsic non-
uniqueness, which is due to a duplication of moment tensors, that
occurs in ko h-space. Depending on rake and dip, a rotation of the
strike by 180° can result in an unchanged moment tensor for a fixed
radiation pattern. Given the limited resolution in /# and o, we ob-
serve bimodal distributions in most cases for «, as apparent from
Fig. 4. In addition, this issue is addressed in Fig. 7. The two panels
show different approximations of the joint distribution p(«, &|d),
decomposed according to eq. (6). Note that high probability is as-
signed to the areas in k—% space, that correspond to the target value
(big diamond) and the theoretical duplication point (small diamond)
given by (k + 7, sin6).

1.0 4.5
4.0

0.5 135
13.0

.7r/2 00' 0.5 b1.0 12.5

1
o (rake)

nats

31.95

h cos(dip)
~115 11
11.5
L _116 i 10
0.5
: —117 0.0

90 313153105 327 "Y117 —116 —115

lat (°) lon (°)

Figure 4. Position of the posterior mode plotted against the true target value for the 4000 test set examples. The colour indicates the information gain for every

example according to eq. (14).
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Figure 5. Information gain distributions measured in ‘nats’ for the 4000 test set examples (see eq. 14). The information gain is a measure for how much has
been learnt about a parameter after the data vector has been presented. A higher information gain indicates that the posterior distribution is narrower than the

uniform prior. See also Fig. 1 for explanatory examples.
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Figure 6. Posterior marginal distributions for a test set example. Shown in grey are the predictions of the individual committee members. The position of the
known target value is indicated by the blue vertical line, the prior distribution is shown in green.

Finally, we note that posterior uncertainties in general seem
to vary strongly across the test set, indicating a rather complex
interdependence among multiple parameters and possible trade-
offs that are hidden in a condensed 1-D representation of the
posterior.

3.4 Inversion of the El Mayor Cucapah data set

In the previous section, we used an idealized station distribution
to investigate the resolvability of source parameters using static

displacement data. We will now move to a more realistic situation
and use 37 stations of the CRTN network (red triangles in Fig. 3),
which recorded the 2010 El Mayor Cucapah event. The prior pa-
rameter distributions and the noise model are the same as in the
previous experiment.

Figs 8 and 9 again show performance characteristics for the 4000
test set examples. A comparison with Figs 4 and 5 reveals that most
parameters are now less well resolved. In particular, the average
information gain for the location parameters is significantly lower,
as expected due to the uneven station coverage.
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(a)

0.2 . . 0.8

(b)

1 2 3 4 5 6

Figure 7. Duplication of moment tensors in the k—/ plane. Both panels show the probability p(«, /|d) for the same example, an event with a value of o close

to 7w /2. The large red diamond indicates the position of the target value, the small diamond the position of the duplicate source in the case o = 7 /2. The inset

shows p(o|d) for this example. The distribution in (a) has been constructed according to eq. (6) by decomposing p(x, h|d) = p(k |k, d)p(h|d), where p(h|d)

is shown above the figure. The right-hand panel (b) uses p(x, i|d) = p(h|«, d)p(x|d). Note the flipped axes. Two network committees are thus required for

each 2-D distribution—one for the conditional and one for the marginal distribution. The marginals above and right of the figure are determined by integrating
the 2-D joint distribution. The output of an independent committee trained on p(k|d) (left-hand panel) and p(#|d) (right-hand panel) serves as additional
consistency check and is shown as green dashed line. The reason for the two distributions not being identical are different approximation errors in the network

committees involved. However, they both show essentially the same feature
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Figure 8. Same as Fig. 4, but for the 37 CRTN stations. Note the change in colour scale.

Fig. 10 shows 1-D marginals—our inversion results—obtained
from presenting the network with the observed data. Vertical lines
denote the position of other published solutions. The spread of
published solutions is quite large, due to differing data sets, types of
data, methods and prior information. However, for most parameters
all deterministic solutions lie in ranges to which we assign high
probability. That is, our solution does not explicitly rule out any of
the other solutions for this event, with the exception of longitude
from the W phase & CMT catalogue solutions (green and blue
solid vertical lines, respectively, in Fig. 10). This could possibly
be caused by neglected 3-D structure in our earth models, which

is not averaged out due to the uneven azimuthal station coverage.
Furthermore, these inversions fix depth to values >12 km, which our
inversion indicates to be unrealistically deep. This possibly leads to
a different location estimate due to trade-ofts with depth. We further
address this discrepancy in the Section 4.

We find that our solution favours values for y close to —m /6,
indicating a strong non-DC component, although this is not well
resolved. This is in agreement with most other solutions. We fur-
thermore find that we can resolve the strike «, up to the known
ambiguity (Fig. 7), rake o, magnitude My and the epicentral loca-
tion comparatively well, while the cosine of the dip angle () and the
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Figure 9. Same as Fig. 5, but for the 37 CRTN stations. As compared to Fig. 5, the information gain is lowered for all parameters, due to the uneven station
coverage. Despite that, magnitude, latitude and longitude are still comparatively well resolved. There is a class of test set examples for which the epicentral
location cannot be determined (peak at ~0.5 nats for latitude and longitude). These examples correspond to sources that are further away from the station
network, as can also be seen from Fig. 8 (bottom right-hand panels). The signal for those sources is below the noise level for most receivers.
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Figure 10. Posterior 1-D marginal distributions (solid black line) for the 2010 7.2 El Mayor Cucapah event. The horizontal green line is the uniform prior
distribution and vertical lines correspond to other published point source solutions for this event. Solid lines hereby correspond to teleseismic body and surface
waves’ data sets, dashed lines to data sets using GPS displacement data and the dash-dotted line corresponds to a joint inversion of GPS and seismic data for
the focal mechanism. Zheng et al. (2012) a priori assumed a double-couple and the two solutions (a and b) only differ by their respective strike angle. Note
that they give solution (b) as their preferred choice based on prior information on the fault orientation.
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depth are subject to large uncertainties. Note that the large probabil-
ity densities assigned to the very low ends of the prior range in the
case of y and / are likely to be artefacts of the GMM-approximation
(see also Section 3.3.1 and Figs 4 and 8).

4 DISCUSSION

We have shown inversion results for static displacements observed
after the 2010 El Mayor Cucapah event. Wei et al. (2011) performed
a comprehensive analysis of this event and they find slip distribu-
tions and a moment tensor description by jointly inverting several
seismic and geodetic data sets. Our results are in good agreement
with theirs. In particular, they find that the faulting was geomet-
rically complex and involved strike-slip movement combined with
normal faulting on several distinct subfaults, which is reflected by
a large non-DC component (first panel in Fig. 10). They also find
that most of the energy is released at shallow depths above 10 km,
which is in agreement with our solution, which likewise prefers
very shallow centroid depths (Fig. 10). Note that although some
other depth solutions shown in Fig. 10 are less meaningful, since
depth has been fixed prior to the inversion in these cases, a very
shallow depth is also in accordance with the solutions by Melgar
etal. (2012) and O’Toole et al. (2013), who both used a comparable
data set. Zheng et al. (2012) determined the focal mechanism for
this event from 5 Hz GPS displacement waveforms. They a priori
assume a pure DC and perform a grid search for strike, dip, rake,
moment and depth. They subsequently find two distinct misfit min-
ima for the strike angle, corresponding to the two modes in our
posterior distribution. These two solutions are labelled (a) and (b),
respectively in Fig. 10.

A slight disagreement appears for the epicentral location. Our
solution seems to rule out the GCMT and W-phase inversion re-
sults, which both suggest an event location slightly more to the east.
This could be caused by a number of reasons: first, uncertainties in
location for CMT-type inversions can be on the order of ~50 km in
lateral direction (e.g. Valentine & Trampert 2012a), which would
reconcile the CMT results with our posterior pdf. Secondly, we used
a layered, 1-D earth model despite the very heterogeneous southern
Californian crust (Kohler et al. 2003), which can—in combina-
tion with a one-sided station coverage (red triangles in Fig. 3)—
lead to a significant bias in the estimation of the source location.
In addition, the centroid location depends on the frequency content
of the respective data and we should not necessarily expect centroids
obtained at different frequencies to coincide. Finally, we have not
yet taken into account any effect that uncertainties in the 1-D model
may have upon the location estimate. We now address this issue.

4.1 Uncertainties in the crustal model

Since we lack realistic information on uncertainties in the 1-D earth
model we have not taken them into account in our inversion of
the EI Mayor Cucapah data set. However, it is straightforward to in-
clude modelling uncertainties—if available—into the inversion pro-
cedure. In the following we investigate the effect different amounts
of earth model variation have upon the 1-D posterior marginals.
We draw horizontally layered crustal models M; =
W0, oD, pM,dD, L oD, o®, o@D, dD D ), o), with
parameters P-wave speed v,, S-wave speed vy, density p and

layer thickness d, respectively, for a total of four layers above a
half-space from the prior distribution

1 (M, — M)
— €X] —_—— (-
\% 2770-1\4 P 2012Wk

In this expression, M is the unperturbed crustal model used through-
out Section 3 and the standard deviations o), are set to 0.05 - M,
0.1 - M and 0.2 - M, respectively. A few models drawn from this
prior are shown in Fig. 11. Note that since the perturbations are
drawn in an uncorrelated fashion the v, /v; ratios are also allowed
to change across the training set.

‘We find that variations below 5 per cent do not give rise to changes
in the synthetic data above the noise level, indicating that in general
static displacements show little sensitivity to the 1-D crustal model
structure. Fig. 12 shows the influence of the model variation on the
1-D posterior marginal distributions for different amounts of model
perturbation. It reveals that the parameters governing the radiation
pattern and orientation are less sensitive to model variations than the
parameters governing location and magnitude, which show a clear
broadening with increasing variations. Interestingly, both the lati-
tude and magnitude distributions also show a slight shift. This could
indicate that we have reached a regime in which the neural network
interpolation becomes poor and the number of training samples is
not sufficient to constrain the mapping well, since a large portion
of the training set features very unrealistic earth models. This is a
particular consequence of a poor prior distribution in a relatively
high-dimensional space. Since this effect is only observed for very
strong model perturbations we do not investigate this any further,
but note that the results might be misleading in this particular case.
The longitude estimate seems not to be affected at all, pointing to a
very robust result and suggesting that the observed deviations from
catalogue solutions might indeed stem from large uncertainties in
the CMT inversions or from neglected 3-D structure or station dis-
tribution effects. We note, furthermore, that we do in fact expect
some disagreement between the location estimates of the different
solutions due to the different nature of the data sets on which they
are based, and their respective frequency content.

We conclude that our estimates do not significantly change unless
we impose unrealistically strong model variations of 20 per cent,
suggesting that static displacement measurements can provide
robust information on source parameters. Effects due to neglected
3-D structure obviously may still strongly affect the results. In order
to monitor a specific seismically active region for an EEW appli-
cation, ideally we would generate a training set using 3-D wave-
propagation in a heterogeneous local crustal earth model. Due to
the high computational demands for creating the training set, this
was not feasible for this demonstration.

p(M) = (22)

4.2 Trade-offs

If 1-D marginals are broad, this does not necessarily mean that the
information on the corresponding parameter is limited. Relatively
broad marginals can also result from dependencies between multi-
ple parameters. We can use 2-D marginal distributions as a tool to
discover these trade-offs. Fig. 13 shows the seven possible combina-
tions of / (cosine of dip) with other parameters. The 2-D marginals
reveal a slight linear trade-off with strike « and a more complex
dependency of magnitude My on 4 in a certain range. We investi-
gate possible trade-offs of magnitude with source location in Fig. 14.
A linear trade-off between magnitude and latitude is revealed, which
is to be expected due to the one-sided station distribution. We can
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either favour a smaller source located closer to the station network,
or a larger source, further away. This trade-off might explain why
our 1-D My posterior seems to suggest slightly larger magnitudes
than catalogue solutions (¢f- Fig. 10). An increase in resolution for
latitude would therefore improve estimates of My, as well.

4.3 Limitations of the method

The trained networks smoothly interpolate a set of training exam-
ples. This requires that the training examples cover the full range of
observations that are likely to occur. Naturally the quality of the ap-
proximation strongly depends on the number of training examples,
the smoothness of the inverse mapping and the intrinsic dimen-
sionality of the problem. More samples are likely to be needed if
the complexity of the mapping increases or the number of model
parameters grows. We are, however, able to test the quality of the
network approximation by means of a synthetic test data set. If the
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predictions for the test data set become unreasonable, this is an
indication that a larger training set is needed. Furthermore, care
must be taken to ensure that no observations are presented to the
network which correspond to an event outside the prior range, since
the network would then be forced to extrapolate. In practice, this
might be achieved by, for example, applying an amplitude threshold
and presenting only those observations whose amplitudes lie within
the accepted range.

A further issue is related to the nature of the source description.
Clearly, a moment tensor point source is not a sufficient physical
model to fully explain the near-field deformation pattern of a big
earthquake such as the El Mayor Cucapah event. In fact, Oskin
et al. (2012) show that the total length of the highly complex multi-
fault rupture was 120 km, leading to a complicated post-earthquake
deformation pattern at the surface. Despite that, our results seem
compatible with far-field point source solutions and we therefore
believe that they can still provide a useful characterization of the
source.
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5%.0 24 28 3.2 3.6
p (kg/cm?)

50 7.5 100
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0 3 6 9 12
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Figure 11. Each row shows 100 samples drawn from the prior earth model distribution, according to eq. (22). With standard deviations 5 per cent (top panels),

10 per cent (middle panels) and 20 per cent (bottom panels), respectively.
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Figure 12. Influence of perturbations of the crustal model on the 1-D posterior marginal distributions for the observed datum. The four distributions correspond
to the unperturbed case (dashed black, same as the solid line in Fig. 10), 5 per cent (red), 10 per cent (green) and 20 per cent (blue) variation.

5 CONCLUSIONS

We have presented a new neural network—based methodology for
fast Bayesian point source inversion. We have tested and applied
this method using static displacement data observed by dense GPS
networks, such as the CRTN network in southern California. Our re-
sults reveal that static displacement data contain robust information
on epicentral location and magnitude. Furthermore, we have shown
that the observable is relatively insensitive to the 1-D crustal earth
model and our parameter estimates do not change fundamentally
even for very large model perturbations on the order of 20 per cent
in thickness, v,, v, and p.
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We inverted observed data for the 2010 Myw 7.2 El Mayor Cu-
capah event, confirming previously published moment tensor point
source solutions for that earthquake. In particular, we found that our
posterior parameter uncertainties encompass most other solutions.
A comparison with CMT catalogue solutions reveals that, although
derived from local data, our moment tensor solution is comparable
with solutions inferred from teleseismic body waves. A slight, albeit
not unexpected, disagreement appears for the centroid location, due
to the biased azimuthal coverage, the differing earth models and the
different frequency content of the respective data.

Unlike most deterministic methods, we are also able to invert
for event depth, although this is subject to large uncertainties. We

/2
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Figure 13. Shown are 2-D posterior distributions of # with all other parameters for the observed El Mayor Cucapah data set. A trade-off between /# and Mw
for large values of % (second row, first panel) and a slight dependency of x with % (first row, second panel) is revealed.
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Figure 14. Shown are 2-D posterior distributions of My and depth, My and latitude and My and longitude, respectively, for the observed El Mayor Cucapah

data set. A trade-off between latitude and Myy is revealed.

find that our solution clearly prefers a shallow source, which is in
good agreement with studies that performed comprehensive finite
source modelling. Our result additionally reveals a large non-DC
component, pointing to a complex subsurface fault geometry.

The potential of our method lies in real-time applications, such
as EEW, since it is able to rapidly invert new observations on a rou-
tine basis without additional significant computational effort. The
method stores information obtained from a set of samples repre-
sentative of the relation between model parameters and observable
data—which may have been expensive to produce—in a compact
neural network structure able to interpolate smoothly between the
samples. This committee of networks can be prepared beforehand
and could be kept in memory on a standard desktop computer in
an EEW centre. A new observation, made by the same set of re-
ceivers for which the committees of networks have been trained, can
then be inverted within milliseconds and yields approximations of
1-D and 2-D posterior marginal probability distributions on model
parameters.

Due to the flexible treatment of input data, the method can readily
be extended to incorporate other types of data such as real-time GPS
waveforms or accelerograms from strong-motion sensors—either
individually or as a joint determination. In particular, waveform
data would allow us to invert for the temporal characteristics of an
earthquake as well. This potential remains to be fully explored.
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APPENDIX A: PROBABILITY DENSITY
ESTIMATION USING NEURAL
NETWORKS

A1l The mixture density network (MDN)

In the following, we give analytical expressions for the outputs of
the two-layer feed-forward network architecture depicted in Fig. 2
and relate them to the parameters of the Gaussian mixture model
(GMM) described in the main text. An extensive description is given
by Bishop (1995).

A feed-forward neural network consists of multiple layers of
computational units, which apply a possibly non-linear, scalar acti-
vation function to their input, a weighted linear combination of all
inbound connections. We use a two-layer structure and refer to the
first layer units as ‘hidden units’ with outputs %;, while the second
layer units yield the network outputs y;. The hidden unit activations
are thus given by

1
hi=f (Z w;j'd; + wé}’) (A1)
i=l

and the output layer activations by
H
2 2
=g Y win; +uwy . (A2)
j=1

with input and hidden layer weight matrices w") and w®, respec-

tively, containing the free parameters of the network. The rows wf)lj)

and w&) are referred to as ‘biases’. We combine the input and hidden
layer weight matrix into one weight matrix w in the main text for
notational brevity. As a non-linearity in the hidden layer we use the
hyperbolic tangent f{a) = tanh (¢) whereas in the output layer the
identity function g(a) = a suffices. Such a network has been proven
to form a general function approximator (Hornik ez al. 1989; Bishop
1995).

The network outputs y; are now related to the parameters of a
GMM (eq. 7) as follows. For a GMM with M kernels, our network
possesses O = 3M output units y*, y¥ and y{?), which are related
to the M mixture coefficients «,,, means u,, and standard deviations
o, respectively. We have to impose additional constraints to the
otherwise unbounded network outputs y; to be usable as GMM
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Figure Al. Dependence of the error on the number of hidden units for networks trained on p(depth|d). The blue and green line show the test and validation
set error, respectively, for different choices for the number of hidden units. The error is the average of 10 networks, independently trained and initialized using
different random realizations of the weight vector wg. The dashed blue line is the error of the network that performed best for the respective number of hidden
units. Note that the average error shows a minimum at ~25 hidden units for this particular parameter. The increase of the error for larger networks is due to
overfitting. The red line corresponds to committees formed from these 10 independent runs. Note that the committee error stays on approximately the same
level for overcomplex members and is significantly lower than the error of the best committee member (dashed blue line).

parameters. The mixture coefficients «,, are required to sum to one
and are thus retrieved by applying a ‘softmax’ function to the raw
network outputs
exp ()
ZM (ar) '
m=1 CXp \ Vm

The standard deviations have to be strictly positive, which is
achieved by

(A3)

Ay =

o = exp (1)) (A4)
and the output for the means can be used directly
o = Y. (AS5)

A2 Network initialization

Following Bishop (1995), we draw the initial weight configuration
w' from a normal distribution

0. 1
W~ A (o, dh) , (A6)

where d, is the number of connections feeding into a unit of layer /
(see Fig. 2). The output layer biases wf)zk) are furthermore initialized
in such a way that the network initially outputs the prior distribution
p(my) of the model parameter m;, independent of the input vector
d. Therefore, a GMM with M components is initially fitted to p(m;)
using a k-means clustering algorithm (e.g. MacKay 2003). The
resulting means, variances and mixing coefficients are successively
used to initialize the biases.

A3 Regularization and complexity of the network model

As in any regression algorithm, we face a problem known as bias—
variance trade-off. For a given set of training data, we can find
relatively parsimonious network models that can explain the data on
average but fail to capture the more detailed structure. Alternatively,
we can find more complex models that reproduce the training set
well, but do not interpolate smoothly between data points. The
optimal solution is thus one that is complex enough to capture
the general characteristics of the underlying function, but does not
learn the particular realizations of the noise vector €, a phenomenon
called ‘overfitting’. In order to find an optimal balance, we impose
two types of regularization.

First, as in eq. (3), we add random Gaussian noise to the syn-
thetic inputs corresponding to the expected noise in the observed
data. Bishop (1995) shows that adding uncorrelated random noise
to the network inputs during training is equivalent to a Tikhonov
regularization term in the error function (12) with a coefficient pro-
portional to the variance of the random noise component (see also
Meier et al. 2007a). Secondly, we monitor the error of an indepen-
dent validation data set D,, at each iteration during training and
keep the set of weights that minimizes E[D,,]. This procedure is
referred to as ‘early-stopping’ (Bishop 1995).

A further parameter affecting the model complexity is the num-
ber of hidden units in the network (see Fig. 2 and Appendix Al).
Typically, the validation set error shows a minimum or plateau
as soon as the model is complex enough to explain the training
data. If the model becomes too complex, however, networks start
overfitting and the validation set error increases. For an example,
see Fig. Al, where the green line shows the validation set error
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for networks trained on p(depth|d) averaged over 10 independent
training runs each, for different choices of H. We found a sim-
ilar behaviour for all model parameters, with a slight preference
for more complex models for the networks trained on latitude and
longitude.

A4 Committees of networks

We observe that predictions of a certain parameter may depend
on the starting point w° in weight space of the training algorithm.
This is particularly the case if the observed data contains only weak
information on that parameter. One solution to this problem lies in
limiting the model complexity and imposing stronger regularization
constraints. However, the amount of regularization is based on the
expected noise in the data. Modifying it would thus implicitly alter
our prior observational noise estimate.

Instead we can utilize the variability of the individual networks
to improve the overall prediction performance, by combining the
different solutions into a committee of networks. By averaging
over multiple high-likelihood models we take into account the non-
uniqueness of the network model, which we neglected when replac-
ing the integral in (11) with a single set of optimal weights w*.
Bishop (1995) shows that the error of such a committee is bounded
above by the average member error. Committees of MDNs have
previously been used by, for example, Cornford ef al. (1999) and
Carney et al. (2005).

We thus write

c

w;

plmild) =" plmild, w)), (A7)
i=1 Z/‘ @j

where C is the number of committee members and w; denotes the

set of weights of the ith member. Each member’s contribution is

weighted by a factor of

E[Diest, W] }

N (A8)

w; = €Xp {—
with E[Di.s, w;] being the error (eq. 12) of the independent test
set Dy for the ith member and N the number of examples in
Diest-

Note that the resulting distribution is still a GMM, now with C -
M Gaussian kernels and mixture coefficients given by
Wi

ﬂ(M4[+m) = W((xm)[v (A9)
j ]

J

where («,,); 1s the mixing coefficient for the mth kernel of the ith
committee member. This somewhat empirical approach proves to
be reasonable, since the committee prediction leads to significantly
lower test set errors than the errors of most of its individual mem-
bers. See Fig. Al for networks trained on p(depth|d). The red line
corresponds to the test set error of a committee formed from 10 in-
dependent networks, each trained starting from a different random
point wy in weight space. The test set error varies between the differ-
ent networks and the average error E . (shown as a solid blue line in
Fig. A1) is much higher than the error E%" of the committee. Note
that in this particular case the committee error is even lower than the
error of its best member (dashed blue line in Fig. A1) for this para-
meter. Committees trained on other parameters behave similarly.

APPENDIX B: DATA SET
PRE-PROCESSING

B1 Standardizing

The input vectors of the training set {d,},, are standardized accord-
ing to the following transformation to have zero mean and standard
deviation one. This increases the convergence speed of network
training significantly.

~  dy—d;
dp = ——£, (B1)
Sk
with the sample mean
1 Nie
di = 5D () (B2)
=l
and variance
1 Nir .
si = > [ —di] (B3)
Ny —1

i=1
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