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Residual Topography Dataset: Observational constraints on the spatial pattern, wavelength and amplitude of1

residual topography are central to this study. We utilise an updated compilation of residual topography measurements,2

based upon the database and methodology of Hoggard et al. (2017) [1], which builds on a number of previous regional3

studies [2, 3, 4]. In comparison to [1], existing marine seismic experiments have been further quality checked and4

supplemented with additional surveys. The final database contains 1,328 reflection profiles, 305 modern wide-angle5

experiments and 394 vintage seismic refraction experiments. This provides point-wise coverage of the oceanic realm,6

with points concentrated at thickly sedimented continental margins. At each location, careful analyses were undertaken7

to remove the isostatic consequences of variable sedimentary loading, and also crustal thickness where possible. Age-8

depth cooling is removed using a simple analytical plate model [1]. This differs from [5] who used the empirical age-depth9

relationship of Crosby et al. (2009) [6]. We use an updated oceanic age-grid [7] that is largely based upon the age grid10

of [8], but corrects gridding artefacts and includes additional missing sites of oceanic lithosphere. Finally, we remove11

any measurement that does not include a crustal correction if it occurs within 111 km of a measurement that does.12

Our updated database comprises 2,030 spot measurements, including 1,160 highly-accurate points that incorporate a13

crustal correction (circles in Supplementary Fig. 1a) and 870 that do not (triangles). To account for the lack of a crustal14

correction, an additional 0.2 km of uncertainty has been added to triangles, in accordance with the typical magnitude15

of the crustal correction.16

To provide more comprehensive coverage across the oceanic realm, this dataset has been supplemented by ship-track17

residual depth estimates compiled using the same approach [1]. Water depth is measured from ship-track bathymetry18

[9] and sedimentary corrections are calculated using global digital grids [10]. Sedimentary corrections are particularly19

uncertain along continental margins and, accordingly, regions where sediment thickness exceeds 1.5 km were excised, as20

well as areas with anomalously thick or thin crust, including seamounts, plateaus and fracture zones. Furthermore, the21

lack of global grids of oceanic crustal thickness prevents application of a crustal correction. Thus, we have also added22

0.2 km uncertainty to ship-track based estimates. We note that, at their intersections, ship-track derived estimates23
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generally match the point-wise measurements [5, 1] (Supplementary Fig. 1b).24

On continents, attempts to constrain residual topography are complicated by variable lithospheric architecture and25

structural complexity [11]. Nonetheless, in an attempt to better constrain a global spherical harmonic residual topogra-26

phy model, Hoggard et al. (2016) [5] further supplemented this dataset with a series of continental models. Their main27

model assumed a constant admittance to transform free-air gravity anomalies to residual topography (Supplementary28

Fig. 1c). Several studies have since demonstrated, however, that free-air gravity anomalies cannot robustly constrain29

dynamic topography: the assumption of constant admittance is therefore invalid, with potential for large dynamic to-30

pography without large free-air gravity anomalies [12, 13, 14]. Accordingly, in this study, we utilise residual topography31

estimates (point-wise/spot and ship-track) from the oceanic realm only.32

Power Spectral Decompositions using a Tikhonov-style regularisation Approach: Here, we explore the33

consequences of utilising the Tikhonov-style regularisation approach, as in Hoggard et al. (2016) [5]. In [5], the34

regularisation operator was constructed to prefer low-amplitude, smooth solutions, consistent with the principle of35

‘Occam’s Razor’. We remark that ‘smooth’ can be defined in different ways; [5] chose to penalise the first derivative of36

the recovered field, and the total power contained within it (i.e. the sum of squares of model coefficients). The relative37

weights assigned to each penalty term were governed by two tuneable parameters, which we denote by α (overall power38

term) and β (gradient term). [5] explored regularisation parameter values, adopting α = 20 and β = 1 for their core39

results, with ranges of 10–32 and 0.56–1.78, respectively (using definitions from this paper). This choice was motivated40

by inspection of the trade-off curve (L-curve) for misfit against parameters. To simplify the process of comparing results41

across different simulations, we adopt an automatic regularisation parameter selection algorithm, as described in [15].42

This employs a hierarchical Bayesian approach, designed to ensure that the regularisation is statistically consistent with43

the observational constraints. Applying this to our oceanic point-wise and ship-track residual topography dataset, we44

determine optimal values of α = 1.25 and β = 1.28. We use this regularisation and perform several inversions: two for45

each of our simulations, the first with full global coverage and the second sampled only at the (spot & ship-track) data46

point locations, with a further inversion using the observational constraints. In all cases, we invert for a model up to47

maximum spherical harmonic degree lmax = 50, but plot results only up to l = 30. In doing so, we aim to minimise48

effects arising from spectral leakage [16].49

Results of these inversions are shown in Supplementary Fig. 3(a); we use solid lines to denote inversion of full data,50

and dotted lines for inversion of sampled data. The difference in spectral characteristics between the two simulations is51

clear: whether full or sampled datasets are used, the simulation with shallow structure shows a relatively flat spectrum,52

similar to that preferred by [5], while the simulation without shallow structure has a rapid drop-off in power beyond the53

lowest degrees. These trends are consistent with the unregularised power spectra illustrated in Fig. 1(f) of the main54

manuscript. When all simulation data is used (i.e. full global coverage), these results are extremely well-constrained,55

such that there is minimal uncertainty on the power spectra; however, once the data is sampled to correspond to56

available observational constraints, this is no longer the case. Within the Bayesian interpretation, we obtain Gaussian57
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uncertainties on the recovered model coefficients. However, since the power spectrum depends on the square of these58

coefficients, spectral uncertainties are non-Gaussian. To provide an intuitive understanding of the range of spectra59

that could be compatible with data, Supplementary Fig. 3(a) also includes ranges that can be interpreted as 50% and60

99% confidence intervals on the spectra obtained using realistically-sampled data. Looking at results from inversion of61

simulations lacking shallow structure especially, we see a counter-intuitive effect that emerges from the non-Gaussian62

statistics: the spectrum of the most-probable model (i.e. the red dotted line) lies well outside even the 99% confidence63

interval. Although this synthetic dataset is known to have very little power at high degrees, most fields that can be64

constructed to match data and our prior assumptions will over-estimate the power by up to two orders of magnitude,65

beyond l = 5. Thus, consistent with [14, 17], based upon these analyses, we would suggest that above l ≈ 5 it is difficult66

to argue that the results of [5] falsify arguments from the predictive modelling community.67

Of course, these spectra are dependent on the values of α and β estimated from the observational constraints. In68

Supplementary Figs. 3(b) and 3(c), we show examples where α and β are instead determined from one or other of the69

simulated datasets. When the simulation without shallow structure is used (Supplementary Fig. 3b), results are distinct70

from those of Supplementary Fig. 3(a), but the spectrum of the simulated data remains of a different character to that71

derived from the observational constraints. On the other hand, when the simulation containing shallow structure is used72

to determine the regularisation parameters, synthetic predictions and observational constraints are relatively similar.73

Given the framing of the determination procedure, this suggests that the observational constraints have characteristics74

that are more similar to those of the simulation with shallow structure, than the one without. For completeness, in75

Supplementary Fig. 4, we illustrate results from comparable inversions using only the 2,030 spot measurements: these76

are generally consistent with those obtained when both the spot and ship-track locations are used.77

Nevertheless, these results are predicated upon the assumptions implicit within the form of regularisation operator78

introduced by [5]. As highlighted in the main manuscript, these express a prior preference for a relatively flat power79

spectrum (Supplementary Fig. 2), making it difficult to assess whether the results of [5] reflect signal in the data,80

or simply the initial biases. Our study overcomes this shortcoming using a different style of regularisation, termed81

Automatic Relevance Determination (ARD) [18, 15]. Unfortunately, it is difficult to apply the ARD approach to the82

spot measurements alone, as there is insufficient data to robustly estimate appropriate hyperparameters (noting that 5083

hyperparameters would need to be determined from only 2,030 spot measurements).84
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Supplementary Figures119

(a) Spot Measurements Only

(b) Spot & Ship-Track

(c) Spot, Ship-Track and Continental (assuming constant admittance) 

-1.5 km  +1.5 km 

Supplementary Figure 1: Observational Constraints on Residual Topography: (a) An updated compilation of the point-wise
measurements of residual topography from Hoggard et al. (2017) [1] (1,160 of these points incorporate a crustal correction – circles –
whilst 870 do not – triangles). To generate our global spherical harmonic residual topography estimate, these point-wise constraints were
supplemented in the oceans with residual depth estimates from ship-track bathymetry, with this combined dataset illustrated in panel (b). In
panel (c), we illustrate the final dataset of Hoggard et al. (2016) [5], where a model of residual topography was utilised on continents. This
model assumed a constant admittance to transform free-air gravity anomalies to residual topography. In our study, we utilised the residual
topography estimates plotted in panel (b) only.

5



= 0.0 = 1.0 = 0.0 = 2.0 = 0.0 = 3.0 = 0.0 = 4.0

10 5
10 3
10 1
101

= 5.0 = 0.0 = 5.0 = 1.0 = 5.0 = 2.0 = 5.0 = 3.0 = 5.0 = 4.0

10 5
10 3
10 1
101

= 10.0 = 0.0 = 10.0 = 1.0 = 10.0 = 2.0 = 10.0 = 3.0 = 10.0 = 4.0

10 5
10 3
10 1
101

= 15.0 = 0.0 = 15.0 = 1.0 = 15.0 = 2.0 = 15.0 = 3.0 = 15.0 = 4.0

10 5
10 3
10 1
101

= 20.0 = 0.0 = 20.0 = 1.0 = 20.0 = 2.0 = 20.0 = 3.0 = 20.0 = 4.0

10 5
10 3
10 1
101

= 25.0 = 0.0 = 25.0 = 1.0 = 25.0 = 2.0 = 25.0 = 3.0 = 25.0 = 4.0

0 10 20 30
10 5
10 3
10 1
101

= 30.0 = 0.0

0 10 20 30
= 30.0 = 1.0

0 10 20 30
= 30.0 = 2.0

0 10 20 30
= 30.0 = 3.0

0 10 20 30
= 30.0 = 4.0

Supplementary Figure 2: Prior assumptions encoded within the Tikhonov-style regularisation approach adopted by [5].
Shaded regions represent 50% and 99% confidence intervals encompassed by 106 samples from the prior distribution represented by C−1

m =
α2I + β2H, for a range of values of α and β. Note that [5] chose α = 20 and β = 1.0, with ranges of 10–32 and 0.56–1.78, respectively.
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Supplementary Figure 3: Power spectra obtained from simulated datasets and observational constraints using Tikhonov-
style inversions similar to [5] (oceanic point-wise and ship-track locations): in all plots, solid lines denote results from (simulated)
datasets with complete, high-density global coverage; dashed lines represent results obtained using data only at the point-wise and ship-track
observation points (illustrated in Supplementary Fig. 1b). Shaded regions represent 50% and 99% confidence intervals, defined as described
in Methods. Red colours denote inversions of a simulated dataset with no shallow structure; blue colours depict a simulated dataset with
shallow structures present. Grey colours represent results obtained from the observational constraints. In (a), regularisation parameters have
been determined automatically by applying the method of [15] to the observational constraints, and using this choice on all other datasets. In
(b), the regularisation parameters are determined from one simulation (without shallow structure; full global coverage), while in (c) they are
determined from the other (with shallow structure; full global coverage). The observational constraints clearly share spectral characteristics
with the simulation that contains shallow structure.
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Supplementary Figure 4: Power spectra obtained from simulated datasets and observational constraints using Tikhonov-
style inversions similar to [5] (oceanic point-wise locations only): as in Supplementary Fig. 3, but for the point-wise/spot observa-
tional constraints only (illustrated in Supplementary Fig. 1a).
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(a) (b)

Supplementary Figure 5: Inferred Oceanic Residual Topography: spherical harmonic model (regularised using ARD) up to l = 30,
of our updated compilation of oceanic (point-wise and ship-track) residual topography measurements (displayed in Supplementary Fig. 1b).
In panel (b) we display the l = 0 − 3 components of this model, which is the mean model of the distribution plotted in Fig. 2 of the main
manuscript. Contours are at 0.2 km intervals, with dashed contours denoting negative values and grey indicating the zero contour. For the
l = 0 − 3 components of this mean model, amplitudes range from -0.59 km to 0.76 km. Peak amplitudes at l = 0 − 3, across the entire
distribution of models, are ∼ 0.8 ± 0.1 km.

8



Supplementary Figure 6: Lithospheric thickness estimate used in this study: Derived from the SL2013sv tomography model of
Schaeffer and Lebedev (2013) [19] (see Methods for further information).
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(a) Synthetic Residual Topography (All Components) (b) Synthetic Dynamic Topography (Flow-Related Component)
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Supplementary Figure 7: Residual vs. dynamic synthetic topography predictions from our model incorporating shallow
structure: in (a) the synthetic topography field includes both isostatic contributions from lithospheric thickness variations and mantle
flow-related contributions. If we assume that these lithospheric thickness variations are purely thermal in origin, are not taking part in
convection and make an isostatic contribution to the synthetic residual topography field, their effect can be subtracted out to isolate the
dynamic (flow-related) component of residual topography, which is illustrated in panel (b).
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Supplementary Figure 8: Viscosity profiles for the models examined herein: (a) the depth-dependent viscosity profile utilised
in our model that neglects shallow mantle structure; (b) the minimum, mean and maximum viscosities at any given depth from our models
that account for shallow structure, where viscosity is a function of depth and temperature.
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(a) No Shallow ∆ρ, μ(P), Free-Slip BC  
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(b) Power Spectra

(c) No Shallow ∆ρ, μ(P, T), Free-Slip BC (d) Difference: (c - a) 

(g) With Shallow ∆ρ, μ(P, T), Prescribed BC (h) Difference: (g - e)

(e) With Shallow ∆ρ, μ(P, T), Free-Slip BC (f) Difference: (e - c)
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Supplementary Figure 9: Simulated topography from a range of geodynamical models: (a) synthetic topography from a model
that neglects mantle density and viscosity heterogeneity above 300 km depth; (c) as in panel a, but incorporating a temperature and pressure
dependent viscosity, as illustrated in Supplementary Fig. 8, with panel (d) highlighting the difference between these cases. In panel (e), the
model incorporating shallow (density and viscosity) heterogeneity is illustrated, with the difference to c highlighted in Panel (f). Panel (g),
shows a case with a prescribed kinematic surface boundary condition [8], as opposed to the free-slip boundary condition, with the difference
to e highlighted in Panel (h). Panel (b) displays the spectral decomposition from all cases. Note that these spectra are unregularised and do
not account for sampling biases associated with the observational constraints. Numeric values for each panel indicate colour bar bounds.
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