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Between Earth’s crust and core lies the mantle, a 2,900-km-
thick layer of hot rock that constitutes greater than 80% of 
Earth’s volume. Carrying heat to the surface, the convect-

ing mantle is the ‘engine’ that drives our dynamic planet: it is 
directly or indirectly responsible for almost all large-scale tectonic 
and geological activity1. As the mantle flows, it transmits normal 
stresses to the lithosphere—Earth’s rigid outermost shell—which 
are balanced by gravitational stresses arising through topographic 
deflections of Earth’s surface2–9. This so-called dynamic topogra-
phy is transient, varying both spatially and temporally in response 
to underlying mantle flow. As a result, it is more challenging to iso-
late than isostatic topography. The relative importance of dynamic 
versus isostatic topography varies according to the setting: for 
example, the elevation of the Himalaya is principally isostatic, 
due to the presence of Earth’s thickest continental crust; but the 
broad excess elevation of the stable South African craton has been 
attributed to dynamic topography, generated by mantle upwell-
ing10. Dynamic topography is fundamental to Earth’s gravitational 
field5,11 and also influences surface processes—including erosion, 
sediment transport and deposition—as recorded by stratigraphic 
sequences in sedimentary basins and river profiles12–18. It is directly 
connected to changes in sea level and continental flooding: as con-
tinents migrate over areas of positive dynamic topography, large 
vertical motions lead to the emergence of entire regions; simi-
larly, encountering negative dynamic topography can induce rapid 
inundation of large areas19–23. Surface processes may also influence 
mantle flow: as the topography evolves, the convecting system 
must respond to maintain a force-balance24.

Given the importance of dynamic topography, a number of 
attempts have been made to constrain its spatial pattern, wavelength 

and amplitude. There are generally two ways to approach this: (1) 
estimation of so-called residual topography, by removal of the 
isostatic contribution due to sediments, ice, crust and lithosphere 
from the observed topography9,25–28; or (2) estimation of the surface 
deflections arising from mantle flow, via computational simulation 
(‘predictive modelling’)8,29–34. However, the results obtained using 
these two approaches are inconsistent. Predictive models generally 
exhibit peak amplitudes of 1–2 km. They are dominated by broad 
topographic highs within the Pacific and African domains, separated 
by a band of topographic lows extending from Antarctica, through 
the Americas to the Arctic and broadening beneath the Eurasian 
continent (an example, from ref. 8, is illustrated in Fig. 1a). Residual 
topography estimates, on the other hand, show smaller-scale struc-
ture, with key features including lows at the Australian–Antarctic 
Discordance and Argentine Basin, and highs under the central and 
western Pacific Ocean, offshore southern Africa, the South China 
Sea and the North Atlantic (an example, from ref. 9, is displayed 
in Fig. 1b). The discrepancies between these two approaches are 
consistently seen across a number of independent studies8,35, and 
may arise from a combination of uncertainty on key parameters 
and approximations made within the analyses, many of which 
are common across studies. For example, most existing predictive 
models do not account for the effects of uppermost mantle struc-
ture above 225–300 km depth, owing to the difficulties associated 
with inferring density from seismic velocity in the vicinity of Earth’s 
highly heterogeneous lithosphere. Furthermore, mantle viscosity 
and its depth dependence are a key material property in mantle 
flow simulations, but estimates vary by at least an order of magni-
tude. Residual topography estimates also have large uncertainties,  
principally because the density and thickness of Earth’s crust and 
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sedimentary cover, and especially lithospheric thickness variations, 
are all poorly resolved on a global scale8,28,35,36. It should also be 
noted that residual topography estimates cannot often be directly 
compared to dynamic topography predictions, as the former  
regularly include unresolved isostatic contributions arising from 
lithospheric thickness variations, whereas the latter do not.

In an attempt to better constrain residual topography, Hoggard 
et al.9 compiled a database of point-wise estimates within the oceanic 
realm. At each point, care was taken to remove the isostatic conse-
quences of variable sedimentary loading and crustal thickness from 
the observed topography, based on analyses of magnetic anomaly 
patterns and characteristic acoustic architecture in seismic reflec-
tion and refraction profiles. Residual depth anomalies were subse-
quently calculated by removing the effects of ocean-floor cooling, 
using an empirical model37 (although isostatic contributions, arising 
from variations in lithospheric thickness and density unrelated to 
ocean-floor age, were not removed). To generate a global spheri-
cal harmonic decomposition of residual topography, these point-
wise constraints were supplemented in the oceans by residual depth 

measurements from ship-track bathymetry, and on continents by 
a model that transformed free-air gravity anomalies to residual 
topography assuming a constant value for admittance. This data-
base, illustrated in Supplementary Fig. 1, was then used to express 
Earth’s residual topography in terms of spherical harmonic func-
tions, using a regularized least-squares inversion algorithm. This 
allowed the power spectrum of residual topography to be obtained, 
as illustrated in Fig. 1e (dotted line). Hoggard et al.9 concluded that 
their dataset could be accurately represented up to and including 
a maximum spherical harmonic degree of l = 30, with peak power 
of 0.1–0.3 km2 at l = 1–3 (that is, at wavelengths of ~10,000 km) 
along with significant residual topography, of comparable power, 
at l = 15–30 (that is, at shorter wavelengths of 1,000–2,000 km). In 
light of the sensitivity kernels that illustrate how effective density 
anomalies at different depths and spherical harmonic degree are 
at creating topography4,5,9,11,38,39, such a spectrum implies a major 
role for shallow mantle structure and flow. This is inconsistent with 
most predictive models, which exhibit significant power at l = 2 
and negligible power at shorter wavelengths – characteristics that, 
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Fig. 1 | Predicted versus inferred topography. a, Simulated present-day dynamic topography from a time-dependent mantle flow simulation8. b, Inferred 
residual topography from observational constraints9. c,d, Simulated topography from our instantaneous flow models, neglecting (c) and incorporating (d) 
shallow mantle and lithospheric structure, respectively. e, Spectral decomposition of published predictive models8,29–31,49 and observation-based residual 
topography estimates9,41. Note that predictive models cover Earth’s surface at high resolution and have not been regularized, but residual topography 
estimates have, using an automatic regularization parameter selection algorithm46. f, Unregularized spectral decomposition of our simulations—spectra 
computed from the predictive models are not directly comparable with the observational constraints, since they omit effects introduced by irregular 
sampling and processing choices45. Comparisons that account for these effects are displayed in Fig. 2.
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instead, suggest deep mantle flow as the dominant driver for Earth’s 
surface response8,9.

These conclusions have been heavily debated. A number of stud-
ies indicate that admittance varies with wavelength and location, 
with potential for large dynamic topography in the absence of free-
air gravity anomalies11,32,38. This invalidates the continental con-
straints used by Hoggard and colleagues9, and calls the robustness 
of their results into question. Nonetheless, if one generates a power 
spectrum using oceanic residual topography measurements only, or 
uses a model derived from CRUST 1.0 (ref. 40) on continents, the 
general character of the power spectrum remains consistent9. This 
is also the case using an updated compilation of oceanic (point-
wise and ship-track) residual topography measurements, generated 
herein by building on Hoggard and colleagues41 (see Supplementary 
information), where the effects of ocean-floor cooling are removed 
using a theoretical plate model rather than an empirical model: the 
spectrum remains reasonably ‘flat’ (Fig. 1e, solid black line). Taken 
together, these analyses lend continued support to the conclusions 
of Hoggard and colleagues9.

In further support of Hoggard et al.9, Watkins and Conrad42 ana-
lysed the asymmetric subsidence of mid-ocean ridges, finding only 
~500 m of long-wavelength dynamic topography. Moreover, recently 
developed models of mantle dynamics, which account for shallow 
lithospheric structure and small-scale upper mantle convection, 
display significant power at shorter wavelengths (l = 15–30)39,43, as 
expected from the aforementioned sensitivity kernels5,9,11,38,39. These 
models, however, continue to generate long-wavelength residual 
topography that remains at apparent odds with the observational 
constraints, displaying significantly more power at l ≤ 2 (refs. 39,44). 
This is also true of a recent model by Yang and Gurnis32, although 
they proposed that at least part of the long-wavelength discrepancy 
arises due to the sparse nature of the observational constraints41. 
Their study also demonstrates that the conclusions of Hoggard et al.9 
are sensitive to regularization choices45 and suggests that the maxi-
mum degree to which a spherical harmonic representation can be 
inferred from the point-wise residual topography measurements is 
l = 5 (ref. 32). We note that these claims have since been refuted41 and 
emphasize that the analyses of Hoggard and colleagues9,41, Yang and 
Gurnis32 and Yang et al.45 are not directly comparable: power spectra 
are normalized and scaled differently between studies, and different 
regularization approaches are employed; it is therefore not surpris-
ing that different conclusions are being drawn. Consequently, we 
find ourselves at an impasse, with little agreement on: (1) the spatial 
pattern, wavelength and amplitude of dynamic topography; and (2) 
the relative contributions to dynamic topography from shallow and 
deep mantle flow.

In this paper, we employ an approach to performing spherical 
harmonic analyses46 designed to be less dependent on the subjective 
regularization choices that have influenced previous studies9,32,41,45. 
This allows us to obtain a robust estimate of the power spectrum of 
Earth’s oceanic residual topography field from an updated compila-
tion of the (point-wise and ship-track) dataset of Hoggard et al.41. 
Through consistent quantitative comparisons between this spec-
trum and a suite of predictive models of mantle dynamics, we reveal 
how both deep and shallow mantle flow combine to dictate Earth’s 
oceanic residual topography expression. Finally, using these mod-
els as a basis, we isolate the flow-related (truly dynamic) contribu-
tion towards Earth’s residual topography, by estimating the isostatic 
effects of mapped lithospheric thickness variations beneath the 
world’s oceans.

the power spectrum of residual topography
Our procedure for inferring the power spectrum of topography, 
closely following that of Hoggard et al.9, is described in the Methods. 
It involves a regularized least-squares inversion of observational 
constraints to fit a spherical harmonic expansion to the topographic 

signal. As with any such approach, the choice of regularization can 
have a significant influence on results. To guide such choices, it is 
helpful to note that the least-squares procedure has a Bayesian inter-
pretation, in which the regularization operator is identified as the 
covariance matrix of the prior distribution46,47. Thus, the regulariza-
tion operator encodes our assumptions in the absence of any data, 
and plays a key role in determining the character of any solution. 
In Hoggard et al.9, the regularization operator was constructed to 
prefer low-amplitude, smooth solutions. We remark that ‘smooth’ 
can be defined in different ways; Hoggard et  al.9 chose to penal-
ize both the first derivative of the recovered field and the total 
power contained within it (that is, the sum of squares of model 
coefficients). The relative weights assigned to each penalty term in 
this Tikhonov-style regularization were governed by two tuneable 
parameters, which we denote by α (overall power term) and β (gra-
dient term), as detailed in the Methods. Although Hoggard et al.9 
did not adopt an explicitly Bayesian approach, it is instructive to 
do so, and to generate samples from the prior distribution associ-
ated with this regularization. In Supplementary Fig. 2, we show the 
range of power spectra associated with 106 samples, for different α 
and β pairs: regardless of the values adopted, it is clear that this form 
of regularization expresses an a  priori preference for a relatively 
‘flat’ spectrum. The consequences of this are explored via a series 
of inversions of synthetic datasets and observational constraints 
in the Supplementary Information, with key results illustrated in 
Supplementary Figs. 3 and 4. In short, these tests demonstrate that 
conclusions are predicated on the assumptions implicit within the 
form of regularization operator, making it difficult to assess whether 
the power spectrum of Hoggard et al.9 reflects signal in the data, or 
simply the initial biases, as suggested by Yang et al.45.

To address this issue, we perform the inversion procedure using 
a different style of regularization, which we refer to as automatic rel-
evance determination (ARD)46,48. This amounts to introducing one 
regularization parameter for each spherical harmonic degree, and 
then tuning these to match the statistics of the data (see Methods). 
By doing so, we avoid imposing any constraints on the expected 
form of the power spectrum, and allow the data to provide their own 
definition of ‘smooth’. In Fig. 2, we show results from applying this 
procedure to the oceanic residual topography dataset, with maps of 
the resulting spherical harmonic model shown in Supplementary 
Fig. 5. Our analyses: (1) express a preference for 0.5 km2 of residual 
topography power at long wavelength (l = 2), probably in the range 
of 0.25–0.85 km2, with peak amplitudes of up to 0.8 ± 0.1 km—larger 
than suggested by Hoggard et al.9, smaller than predicted by Yang 
and Gurnis32 and Yang et al.45, but within error of analyses by Watkins 
and Conrad42; (2) demonstrate that spectral power decreases by an 
order of magnitude from l = 2 to l = 30; and (3) support the presence 
of a low-amplitude short-wavelength (l = 15–30) residual topogra-
phy component, consistent with Hoggard and colleagues9,41.

Geodynamical model comparisons
To quantify the relative contributions to our revised power spectrum 
from shallow and deep mantle flow, we also apply the ARD proce-
dure to two end-member geodynamical simulations (see Methods 
for further details, including model limitations): (1) a simulation 
that neglects density and thermal heterogeneity in the uppermost 
300 km of the mantle, with viscosity dependent on depth only, 
allowing us to quantify the first-order topographic expression of 
deeper mantle flow (Fig. 1c); and (2) a simulation constrained by 
an estimate of lithospheric thickness (Supplementary Fig. 6), which 
allows for the inclusion of shallow-density heterogeneity and ther-
mal structure, with viscosity dependent on both depth and tempera-
ture, thereby accounting for shallow mantle flow and its interaction 
with the lithosphere (Fig. 1d). The predicted topography from  
the first simulation shares many characteristics with published  
studies8,30,31,33,49, displaying long-wavelength topographic highs 
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within the Pacific domain, southern and eastern Africa, and the 
North Atlantic, and with lows extending across Central and South 
America, Europe, northwest Africa and Asia. Spectral power dis-
plays a clear peak at l = 2, with a rapid drop-off at higher l (Fig. 1f). 
Predictions from the second simulation, where the effect of ocean-
floor cooling is removed using the plate model of Hoggard et al.41, 
closely resemble those of Steinberger39, with shorter-wavelength 
topographic features clearly visible. The Pacific domain, however, is 
generally associated with a topographic high, albeit with a broad low 
off the west coast of South America and more localized lows in the 
northeast Pacific. Large topographic highs are also visible in the west-
ern United States, western Antarctica, East Africa, the South China 
Sea, eastern Asia and adjacent to Iceland, with major lows focused 
along the Australian–Antarctic Discordance, the South Atlantic, 
the southern Indian Ocean and southeast of Arabia. Spectral power 
also peaks at l = 2 (Fig. 1f), but it does not drop off significantly at 
higher l and, in general character, is more consistent with the oceanic 
residual topography spectrum, albeit displaying larger amplitudes, 
as identified by Steinberger39. Both simulations predict more power 
than the observational constraints at l ≤ 2, with this discrepancy larg-
est in the model incorporating shallow structure.

These predictive models are next sampled at the locations of 
point-wise and ship-track oceanic residual topography estimates, 
thus enabling fully consistent comparisons with the observational 
constraints, while the ARD procedure is performed independently 
for each inversion. Strikingly, the simulated dataset without shallow 
structure shows a sharp drop-off beyond l = 8 (Fig. 2): the topo-
graphic signal lies below the assumed noise level in the data and, 
accordingly, the ARD procedure determines that higher spherical 
harmonic degrees can be set to zero without affecting data fit. This 

is in partial support of arguments made by Yang and Gurnis32 and 
Yang et al.45, although it is noteworthy that this does not occur when 
applied to the observational constraints, demonstrating the robust-
ness of the inferred short-wavelength residual topography signal.

The overall characteristics of the residual topography constraints 
are generally consistent with the simulation incorporating shallow 
structure. In comparison to the simulation, the observational data-
set displays significantly less power at l = 1 (an offset of ~0.6 km2), 
and slightly less power throughout the remainder of the spectrum, 
but the overall trend is well matched, with the range of plausible 
models often overlapping (beyond l = 1, the offset is consistently 
below 0.12 km2). When combined, these comparisons demonstrate 
that: (1) the l = 2 component of residual topography is compatible 
with the l = 2 component of our predictive models, implying a key 
role for deep mantle flow in dictating Earth’s topographic signature, 
consistent with Yang and Gurnis32 and Yang et al.45; and (2) although 
spectral power does decrease by an order of magnitude from l = 2 
to l = 30, the short-wavelength components are a direct manifes-
tation of lithospheric structure and uppermost mantle dynamics, 
supporting the conclusions of Hoggard et al.9. We therefore return 
to the standpoint that the long-wavelength components of residual 
topography, which are principally controlled by deep mantle flow, 
dominate the spherical harmonic power spectrum. The shorter-
wavelength components, dictated by lithospheric structure and 
uppermost mantle flow, are robust, albeit less significant, in terms of 
spectral power5,38. Critically, the observational constraints support 
a crucial role for both deep and shallow mantle flow in dictating 
Earth’s surface response.

the flow-related component of residual topography
The observational constraints on residual topography utilized here 
are not solely a consequence of underlying mantle flow (that is, they 
are not fully dynamic in origin). As stated previously, to account 
for the effects of ocean-floor cooling with age, an age-dependent 
theoretical plate model has been subtracted from the isostatically 
(crustal and sediment) corrected topography41. The same procedure 
was applied to our simulation that incorporates shallow structure, to 
generate a consistent synthetic estimate of residual topography and, 
thus, enable direct comparison with the observational constraints. 
However, by doing so, we are assuming that, in the oceans, litho-
spheric thickness (and density) varies as a function of ocean-floor 
age only and, hence, are ignoring local deviations about this average 
behaviour that are apparent in Supplementary Fig. 6. Accordingly, the 
effect of anomalous, non-age-dependent lithospheric thickness vari-
ations are incorporated into the residual topography estimates. Such 
variability is probably isostatic in nature35,43 and not a direct mani-
festation of present-day mantle flow. Indeed, as stated by Hoggard 
et al.41, observational constraints on residual topography represent an 
upper bound on the flow-related dynamic topography component.

Given that our synthetic residual topography field is generally 
consistent with Earth’s residual topography expression (correla-
tion = 0.4), it is of interest to isolate the dynamic (flow-related) 
component in our simulation, in an attempt to better understand 
this partitioning on Earth. We do so using a simple approach, which 
assumes that lithospheric thickness variations are thermal in origin 
(poorly constrained compositional variations are neglected) and 
have an isostatic contribution that can be subtracted (see Methods). 
Our approximation of the resulting dynamic topography field is 
illustrated in Supplementary Fig. 7; this displays clear differences 
to the model that omits shallow structure (cf. Fig. 1c). These dif-
ferences are confirmed by an ARD-based inversion (solely within 
the oceanic realm at the locations of spot and ship-track measure-
ments): the general character of the resulting dynamic topography 
power spectrum is broadly consistent with the residual topography 
spectrum, but distinct from the spectrum of the model neglecting 
shallow structure (Fig. 3a). This indicates that the interplay between 
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upper mantle flow and the base of Earth’s heterogeneous lithosphere 
plays a crucial role in generating dynamic topography and in con-
trolling the character of the power spectrum.

Closer examination of these spectra reveals another important 
trend (Fig. 3b): within the oceanic realm, at l = 2, greater than 80% 
of the synthetic residual topography signal is related to mantle flow, 
as opposed to mapped lithospheric thickness variations. Conversely, 
at higher l (particularly at l ≥ 15), greater than 50% of the residual 
topography signal can be attributed to isostatic effects arising 
from non-age-dependent variations in lithospheric thickness. Our 
approach is simplified, but these results are intriguing, implying that 
although oceanic residual topography measurements are a reason-
able reflection of flow-related dynamic topography at long wave-
length, that is not the case at shorter wavelengths. A corollary to 
this is that efforts to extract the shorter-wavelength components 
of flow-related dynamic topography from the observational record 
will be successful only if isostatic effects, arising from variations in 
the thickness and density of Earth’s lithosphere, can be carefully iso-
lated and removed. Doing so will require a comprehensive, multi-
scale understanding of the structure and composition of Earth’s 
lithosphere. It is therefore timely that recent studies are demonstrat-
ing significant progress in this endeavour50.

online content
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Methods
Global mantle flow simulations: approach and limitations. We focus on two 
end-member simulations of global mantle flow. In the first, lateral variations in 
density and viscosity are ignored in the uppermost mantle (above 300 km depth), 
thus allowing us to quantify the first-order topographic expression of deeper 
mantle flow. In the second, we account for the effects of shallow mantle flow and 
its interaction with the lithosphere, by incorporating variations in density and 
temperature (and the associated variations in viscosity) for the entire convecting 
mantle and lithosphere.

We solve the equations governing instantaneous mantle convection (that 
is, the present-day flow-field is computed in the context of prescribed density 
and rheological variations) inside a spherical shell, using a modified version 
of Fluidity51–54, recently validated against a range of analytical solutions and 
benchmarked against published results from alternative spherical shell mantle 
convection codes55–57. In our simulations, the inner radius corresponds to 
the core–mantle boundary and the outer radius to Earth’s surface. Free-slip 
mechanical boundary conditions are specified at each boundary. Consistent 
with a number of previous models8,39,44, we assume incompressibility and the 
Boussinesq approximation, with phase transitions neglected. Models employ a 
fixed icosahedral mesh with a lateral resolution of ~50 km at the surface. This is 
extruded in the radial direction, with radial spacing increasing linearly from 10 km 
at the surface to 100 km at the core–mantle boundary.

In our first model, density anomalies below 300 km depth are derived from 
the shear-wave tomography model S40RTS58, using the conversion factor d 
lnρ/d lnVS = 0.2. Density variations above this depth are neglected. This model 
includes a simple depth-dependent viscosity, with five layers, as illustrated in 
Supplementary Fig. 8a. Dynamic topography is computed from radial stresses, 
τrr, at the surface via: h = τrr/(Δρextg), where Δρext is the density contrast between 
uppermost mantle density and air (continents, 3,300 kg m−3) or water (oceans, 
2,300 kg m−3), and g (9.81 m s−2) is the gravitational acceleration (continents are 
defined as regions where the age grid of Richards et al.59 is undefined). The surface 
topography computed from this model is therefore a direct manifestation of flow-
related normal stresses (that is, it is solely dynamic in origin). As illustrated in 
Fig. 1c, topographic predictions share many characteristics with several published 
predictive models8,30,31,33,49.

In our second model, we account for the first-order effects of lithospheric 
thickness, which allows us to approximate density anomalies above 300 km depth, 
leading to more complete computations of mantle flow and the associated surface 
topography. Lithospheric thickness is estimated using the method first described in 
Davies et al.60, in which the depth-averaged velocity in the upper mantle (to a depth 
of 350 km) is assumed to be proportional to lithospheric thickness. In this case, the 
upper mantle Sv model SL2013sv61 is used as input, with the resulting estimate of 
lithospheric thickness illustrated in Supplementary Fig. 6. Our method reproduces 
the first-order characteristics of other global lithospheric thickness models50,62, 
predicting that the lithosphere is generally thin beneath young oceans and thicker 
beneath older oceans and continents. Within the oceans, there is a general trend of 
increasing lithospheric thickness with age. Within the continents, cratonic regions 
generally have thicknesses of 250–300 km, with thinner regions found near areas 
of recent or ongoing subduction or rifting (for example, western United States, 
eastern Asia and northeastern Africa). We note that lithospheric thickness models 
derived from SL2013sv have already been successfully applied in global models39 
and regional studies of the North American lithosphere63.

The conversion of seismic velocity to density inside the lithosphere is 
complicated by contrasting thermal and chemical effects. We take a simple 
approach, first prescribing a thermal structure within the lithosphere, based on an 
error function temperature profile that corresponds to the lithospheric thickness 
model (assuming a thermal diffusivity, κ = 7.5 × 10−7 m2 s−1). Temperatures 
are subsequently converted to density using a linearized equation of state: 
ρ = ρ0(1 − αΔT), where ρ0 = 3,300 kg m−3 and α = 2.5 × 10−5 K−1. Continental roots 
are seismically fast, but are probably neutrally buoyant64,65. Accordingly, we follow 
the approach of Becker66 and set density anomalies of the mantle’s upper 300 km 
smoothly to zero beneath continental regions, defined as those regions where 
d lnVS > 4% at 100 km depth in the SL2013sv model61. Masking out continental 
roots introduces a compositional anomaly, c, which is unity everywhere below 
300 km and tends toward zero inside old continental regions. Sublithospheric 
density anomalies are derived from S40RTS58, consistent with our first model. 
Sublithospheric temperatures are also derived directly from tomography58, using 
the conversion factor ΔT/d lnVS = −80 K per percentage point. For this model, 
we assume a temperature- and depth-dependent viscosity, following the relation: 
μrexp[E(0.5 − T*)], where T* is the non-dimensional temperature, E = 18.42, while 
μr varies with depth and is set to ensure a mean viscosity consistent with the first 
model. Resulting viscosities are displayed in Supplementary Fig. 8b.

The inclusion of shallow structure, via a lithospheric thickness estimate, implies 
that the topography computed from radial stresses at the surface incorporates 
subsidence of the ocean floor. Accordingly, to allow for direct quantitative 
comparisons with our residual topography dataset, the effect of ocean-floor 
subsidence is subtracted using an identical plate model and ocean-floor age grid. 
Where the age grid is undefined (that is, on continents), we follow Steinberger39 
and assume an age of 175 Myr, such that synthetic topography predictions display 

no dramatic steps across the continent–ocean boundary. Resulting topographies 
are subsequently adjusted to ensure a global mean of zero. We note that the 
resultant synthetic topography prediction incorporates the effects of non-age-
dependent lithospheric thickness variations, as is the case for the observational 
constraints, the significance of which is examined in the main text. As illustrated in 
Fig. 1d, topographic predictions from the second model closely resemble those of 
Steinberger39, who also incorporates shallow mantle and lithospheric structure.

While this paper focuses on the aforementioned cases, we have analysed a 
series of simulations, with systematically increasing complexity. The starting point 
is the first model above, which neglects all (density and rheological) heterogeneity 
above 300 km depth. To this, we have added lateral (temperature- and pressure-
dependent) variations in viscosity throughout the computational domain. The 
resulting topographic field is illustrated in Supplementary Fig. 9c, with the 
difference to the starting model highlighted in Supplementary Fig. 9d. Spectral 
decomposition of both models (Supplementary Fig. 9b, red lines) yields similar 
results, suggesting that topographic predictions are only weakly sensitive to lateral 
variations in viscosity within the convecting mantle and lithosphere. We note that 
this result is at odds with Osei Tutu et al.67, the reasons for which require further 
investigation. In Supplementary Fig. 9f, we illustrate the difference between 
this model and a model where we incorporate shallow-density heterogeneity 
based on our global estimate of lithospheric thickness (Supplementary Fig. 9e). 
The difference field closely resembles the full model (Supplementary Fig. 9e), 
demonstrating the dominant role of shallow structure in generating topography, 
as expected from the sensitivity kernels that illustrate the effectiveness of 
density anomalies at different depths and spherical harmonic degrees at creating 
topography5,11,38,39. In Supplementary Fig. 9g, we explore the effect of a different 
surface velocity boundary condition, prescribing present-day plate velocities 
from the dataset of Müller et al.68. As noted by Steinberger39, this change has an 
important effect at long wavelengths (increasing spectral power marginally at 
l < 5), causing a decrease in topography beneath mid-ocean ridges, particularly 
at fast-spreading centres (for example, the East Pacific Rise), and an increase in 
topography within the western and central Pacific. It remains unclear whether 
prescribed or free-slip boundary conditions are the most suitable for simulations 
of this nature: if plate motions are prescribed but are inconsistent with the forces 
acting on these plates, the computed topography may be inappropriate, hence our 
decision to focus on the simulation with free-slip boundary conditions herein.

We emphasize that fine details of the predicted topography in our simulations 
and their associated power spectra are sensitive to several model parameters. 
These include: (1) the depth and lateral dependence of mantle viscosity, which 
remain poorly constrained69–72, and may influence both coupling between upper 
and lower mantle and the transmission of stress across the asthenosphere to the 
lithosphere; (2) the seismic tomography model used as the basis for defining the 
mantle’s density and thermal structure —although tomographic models now 
show broad similarity in the distribution of heterogeneity at a large scale73, they 
differ in amplitude and in the distribution of smaller-scale heterogeneity; (3) our 
approach for converting seismic velocity to density and temperature, noting that 
the constant conversion factor used does not account for the non-linear sensitivity 
of seismic velocity to pressure, temperature, composition and phase74–79; and (4) 
the lithospheric thickness estimate utilized, variations to which will modify how 
mantle flow interacts with shallow structure39,62. Nonetheless, our models are 
based on a reasonable set of parameters that allow us to illustrate the probable 
roles of shallow and deep mantle flow in generating Earth’s surface response: 
our raw numerical predictions are generally consistent with time-dependent and 
instantaneous flow models from published studies8,39 as they have been executed 
in a similar parameter space. With our current understanding of the uncertainties 
surrounding these parameters and the associated sensitivities30,39,44, it appears 
unlikely that our conclusions would be modified substantially. However, we 
acknowledge that this should be explored in detail in the future, in both time-
dependent models of mantle flow that exploit, for example, time-integrated 
histories of Phanerozoic plate subduction8 and present-day tomographic 
constraints34,49, and instantaneous flow models that better account for tomographic 
and mineral physics uncertainties.

Extraction of the dynamic (flow-related) component from the synthetic 
residual topography field. The definition of dynamic topography excludes 
topography isostatically supported through crustal thickness variations. However, 
it is less clear whether or not topography supported by density anomalies 
within the mantle lithosphere, or lithospheric thickness variations, should be 
included9,35,39,41. Both the observational constraints on residual topography and 
the synthetic residual topography estimates utilized herein (for the model with 
shallow structure) incorporate topographic contributions arising from lithospheric 
thickness and density variations (that is, deviations from a plate-cooling model) 
as well as present-day mantle flow (that is, dynamic topography directly due to 
normal stresses imposed by underlying mantle flow). It is of interest to isolate the 
dynamic (flow-related) component in our synthetic residual topography field, in 
an attempt to better understand this partitioning on Earth. To do so, we take the 
following steps: (1) assuming that lithospheric thickness variations are thermal in 
origin, we invert our lithospheric thickness model for a map of lithospheric age, 
based on the half-space cooling approximation (noting that continental regions are 
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assigned a constant age of 175 Myr); and (2) under the assumption that lithospheric 
thickness variations make an isostatic contribution towards residual topography, 
we subtract point-wise estimates of subsidence based on this lithospheric age map 
and the following relationship between age and depth: d = 2.6 + 0.25(age)1/2 (with 
age in Myr), with the resulting global topography field adjusted to ensure a mean 
of zero. This differs to subtracting an ocean-floor-age-dependent plate model 
from our topographic prediction, and yields an approximation to the flow-related 
component of topography, illustrated in Supplementary Fig. 7. The associated 
spherical harmonic spectral decomposition (carried out solely within the oceanic 
realm at the locations of spot and ship-track observational constraints) is  
displayed in Fig. 3.

Computation of power spectra and uncertainties. Our approach is based 
on that set out in Hoggard et al.9. We assume that the topographic signal 
can be represented in terms of a spherical harmonic expansion up to degree 
lmax, omitting the spherically-symmetric (degree-0) term. We therefore write 

f ðθ; ϕÞ ¼
Plmax

l¼1

Pl
m¼�l

clmYlmðθ; ϕÞ

I

, where Y lm
I

 is a real surface spherical harmonic as 

defined in section B.6 of Dahlen and Tromp80; note that these are normalized to 
have unit power. We then perform a regularized least-squares inversion to recover 
the ((lmax + 1)2 − 1) coefficients of this expansion. In all cases, we invert for a model 
up to maximum spherical harmonic degree lmax = 50, but plot results only up to 
l = 30. In doing so, we aim to minimize effects arising from spectral leakage81.

We follow Tarantola and Valette47, and note that least-squares inversion can be 
framed as a Bayesian inference procedure. We use m to denote a vector containing 
all the coefficients clm. Our prior probability distribution for m, that is, our state 
of knowledge before seeing any data, has Gaussian form, with zero mean, and is 
characterized by a prior model covariance matrix Cm. Our vector of observations, 
d, is assumed to be subject to random noise described by a zero-mean Gaussian 
with covariance matrix Cd. For this study, we assume that the noise has no 
spatial correlations, so that the covariance matrix has non-zero elements only 
on the leading diagonal; we base these on the uncertainty estimates reported by 
Hoggard et al.9 (including in cases where the ‘data’ being inverted are the output 
of a numerical simulation). Given these assumptions, the information obtained 
from the observations leads us to a posterior probability distribution of Gaussian 
form centred on m ¼ ATC�1

d Aþ C�1
m

� ��1
ATC�1

d d
I

, with covariance matrix 
ATC�1

d Aþ C�1
m

� ��1

I
. The matrix A here is defined such that A½ ij¼ Y ljmj ðθi; ϕiÞ

I
,  

where (θi, ϕi) represents the location associated with the ith element of d, and 
where lj and mj denote the degree and order of the spherical harmonic coefficient 
represented by the jth element of m. The power at degree l is then defined as 

Pl ¼
Pl

m¼�l
c2lm

I

; this is the quantity we plot when we show spectra.

To complete the specification of our inversion procedure, it is necessary to 
define Cm. Our approach here builds on Valentine and Sambridge46, and a full 
discussion of the issues surrounding regularization can be found in that study. We 
employ two different forms of model covariance matrix in this paper. The first is as 
used in Hoggard et al.9, and is most conveniently specified by stating a parametric 
form for the inverse covariance matrix, C�1

m ¼ α2I þ β2H
I

, where α (overall power 
term) and β (gradient term) are tuneable hyperparameters, I is an identity matrix, 
and where [H]ij = li(li + 1)δij. As described in Hoggard et al.9, this H penalizes 
steep gradients in the recovered field. We refer to this form of covariance matrix 
as ‘Tikhonov style’. Results from inversions of this nature are described in the 
Supplementary Information. The second form of regularization employed, which 
we refer to as ARD following MacKay48, amounts to choosing C�1

m

� �
ij¼ ξli δij

I

,  
with lmax tuneable hyperparameters ξi. Thus, all spherical harmonics of a given 
degree (that is, all m for fixed l) are treated identically, but no relationships are 
enforced between separate degrees. In both cases, a hierarchical Bayesian approach 
described fully in Valentine and Sambridge46 allows us to assess the probability that 
any particular choice of hyperparameters is consistent with the data; we can then 
identify the most probable hyperparameters to use in inversion. Results utilizing 
this form of inversion, using point-wise and ship-track locations, are included in 
the main section.

The posterior distribution provides insight into the extent to which the 
coefficients clm are constrained by the data. While the posterior distribution on 
coefficients has Gaussian form, the power spectrum depends on the squared 
coefficients, and its posterior follows a generalized χ2 (that is, non-Gaussian) 
distribution. This has a number of counterintuitive features, including the fact that 
the most probable spectrum for a given dataset is not necessarily similar to the 
spectrum obtained from the most probable set of coefficients. To provide a readily 
understood quantification of uncertainty on spectra produced using Tikhonov-
style regularization, we: (1) generate 1,000 representative hyperparameter pairs 
(α, β) by sampling the hyperparameter probability distribution as described 
in Valentine and Sambridge46; (2) perform an inversion of the dataset for each 
hyperparameter pair, to obtain a posterior Gaussian distribution for each; (3) 
generate 100,000 random samples from each of these posterior distributions; (4) 
convert each of these to a power spectrum; and (5) for each spherical harmonic 
degree, show the ranges spanned by the central 99% of the full set of samples, and 
the central 50% (that is, the inter-quartile range). Steps (1) and (2) ensure that our 
error bars take regularization uncertainty into account. For ARD regularization, we 

perform a similar process, except we approximate the hyperparameter probability 
distribution using a multidimensional Gaussian with covariance inferred from 
the curvature of the true distribution at its peak (as discussed in Valentine and 
Sambridge46). This avoids practical difficulties associated with sampling an 
arbitrary multidimensional distribution.

Data availability
The compilation of observational constraints on residual topography used herein, 
which builds on the database and methodology of Hoggard et al.41, is available 
at https://github.com/drhodrid/Davies_etal_NGeo_2019_Datasets. Synthetic 
topography predictions from our geodynamical simulations are also included.

Code availability
Fluidity is available under the GNU Lesser General Public License. The source code 
and manual can be found at: http://fluidityproject.org. The optimal regularization 
routines utilized for our spherical harmonic analyses are available from: https://
github.com/valentineap/optimal-regularisation.
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